Skip to main content
Log in

Near-Wall Modification of an Explicit Algebraic Reynolds Stress Model Using Elliptic Blending

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The elliptic blending approach is used in order to modify an Explicit Algebraic Reynolds Stress Model so as to reproduce the correct near wall behaviour of the turbulent stresses. The anisotropy stress tensor is expressed as a linear combination of tensor bases whose coefficients are sensitised to the non-local wall-blocking effect through the elliptic blending parameter γ. This parameter is obtained from a separate elliptic equation. The model does not use the distance from the wall thus it can be easily applied to complex geometries. It is validated against detailed DNS data for mean and turbulence quantities for the case of flow and heat transfer between parallel flat plates at three Reynolds numbers as well as against experimental data for the flow in a backward facing step at Re H = 28,000. The comparison with DNS results or experiments is quite satisfactory and shows the validity of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, K., Kondoh, T., Nagano, Y.: On Reynolds-stress expressions and near-wall scaling parameters for predicting wall and homogenous turbulent shear flows. Int. J. Heat Fluid Flow 18, 266–282 (1997)

    Article  Google Scholar 

  2. Abe, K., Jang, Y-J., Leschziner, M.A.: An investigation of wall-anisotropy expressions and lengths-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow 24, 181–198 (2003)

    Article  Google Scholar 

  3. Apsley, D.D., Leschziner, M.: A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows. Int. J. Heat Fluid Flow 19, 209–222 (1998)

    Article  Google Scholar 

  4. Craft, T.J., Ince, N.Z., Launder, B.E.: Recent developments in second-moment closure for buoyancy-affected flows. Dyn. Atmos. Ocean. 23, 99–114 (1996)

    Article  ADS  Google Scholar 

  5. Craft, T.J., Launder: A Reynolds stress closure designed for complex geometries. Int. J. Heat Fluid Flow 17(3), 245–254 (1996)

    Article  Google Scholar 

  6. Daly, B.J., Harlow, F.H.: Transport equations in turbulence. Phys. Fluids 13, 2634–2649 (1970)

    Article  ADS  Google Scholar 

  7. Durbin, P.A.: A Reynolds stress model for the near-wall turbulence. J. Fluid Mech. 249, 465–498 (1993)

    Article  ADS  Google Scholar 

  8. Durbin, P.A.: On the kɛ stagnation point anomaly. Int. J. Heat Fluid Flow 17, 89–90 (1996)

    Article  Google Scholar 

  9. Gatski, T.B., Speziale, C.G.: On explicit algebraic stress model for complex turbulent flows. J. Fluid Mech. 254, 59–78 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Grundestam, O., Wallin, S., Johansson, A.: An explicit algebraic Reynolds stress model based on a nonlinear pressure strain rate model. Int. J. Heat Fluid Flow 26, 732–745 (2005a)

    Article  Google Scholar 

  11. Grundestam, O., Wallin, S., Johansson, A.: Techniques for deriving explicit algebraic Reynolds stress models based on incomplete sets of basis tensors and predictions on fully developed rotating pipe flow. Phys. Fluids 17(115103), 1–13 (2005b)

    MathSciNet  Google Scholar 

  12. Hunt, J.C.R., Graham, J.M.R.: Free-stream turbulence near plane boundaries. J. Fluid Mech. 212, 497–532 (1978)

    Article  MathSciNet  Google Scholar 

  13. Iacovides, H., Launder, B.E., Li, H.Y.: Application of a reflection-free DSM to turbulent flow and heat transfer in a square-sectioned U-bend. Exp. Therm. Fluid Sci. 13, 419–429 (1996)

    Article  Google Scholar 

  14. Kawamura, H., Oshaka, K., Abe, H., Yamamoto, K.: DNS of turbulent heat transfer in channel flow with low to medium-high Prandtl number fluid. Int. J. Heat Fluid Flow 19, 482–491 (1998). (The DNS data can be downloaded from http://murasun.me.noda.tus.ac.jp/db/DNS.html)

    Article  Google Scholar 

  15. Kawamura, H., Abe, H., Matsuo, Y.: DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effect. Int. J. Heat Fluid Flow. 20, 196–207 (1999)

    Article  Google Scholar 

  16. Launder, B.E., Li, S.P.: On the elimination of wall-topography parameters from second-moment closure. Phys. Fluids 6(2), 999–1006 (1994)

    Article  MATH  ADS  Google Scholar 

  17. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

    Article  MATH  ADS  Google Scholar 

  18. Leschziner, M.A., Drikakis, D.: Turbulence modelling and turbulent-flow computation in Aeronautics. Aeronaut. J. 106(1061), 349–384 (2002)

    Google Scholar 

  19. Manceau, R.: Accounting for wall-induced Reynolds stress anisotropy in explicit algebraic stress model. Third International Symposium on Turbulence and Shear Flow Phenomena Sendai, Japan (2003)

  20. Manceau, R., Hanjalic, K.: Elliptic blending model: A new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14, 744–754 (2002)

    Article  ADS  Google Scholar 

  21. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11(4), 943–945 (1999)

    Article  ADS  MATH  Google Scholar 

  22. Rodi, W.: A new algebraic relation for calculating the Reynolds stresses. ZAMM 56, 219–221 (1976)

    MATH  Google Scholar 

  23. Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure–strain correlation of turbulence: An invariant system dynamics approach. J. Fluid Mech. 227, 245–272 (1991)

    Article  MATH  ADS  Google Scholar 

  24. Taulbee, D.B.: An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids A4, 2555–2561 (1992)

    ADS  Google Scholar 

  25. Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. J. Heat Transfer 107, 922–929 (1985)

    Article  Google Scholar 

  26. Wallin, S., Johansson, A.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89–132 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Wallin, S., Johansson, A.: Modelling streamline curvature effects in explicit algebraic Reynolds stress turbulence models. Int. J. Heat Fluid Flow 23, 721–730 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Papadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlatiras, G., Papadakis, G. Near-Wall Modification of an Explicit Algebraic Reynolds Stress Model Using Elliptic Blending. Flow Turbulence Combust 77, 257–275 (2006). https://doi.org/10.1007/s10494-006-9046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-006-9046-2

Key words

Navigation