Skip to main content
Log in

Risk analysis of the spread of the quarantine pest mite Schizotetranychus hindustanicus in Brazil

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Schizotetranychus hindustanicus Hirst (Acari: Tetranychidae) known as the Hindustan citrus mite, is a quarantine pest present in Roraima, Brazil. In 1924 this pest was described in India. It was reported in 2002 in Venezuela and in Roraima in 2008. In 2010, the Hindustan citrus mite was reported in Colombia. It is possible that it will be introduced in other areas of Brazil, resulting in a threat to Brazilian citrus industry. Our objective was to determine the most suitable regions of Brazil for S. hindustanicus using a maximum entropy (Maxent) algorithm, based on native and invasive updated occurrence records from published research, field surveys and online databases. To avoid overfitting and improving transferability, we chose parameter settings of Maxent to construct and validate models by searching for the best combination of feature classes and regularization multipliers. The model obtained showed excellent performance according to all evaluation metrics used. A high potential for the establishment of S. hindustanicus was identified in large areas of Roraima, the extreme west of Amazonas, the entire north of the State of Pará, also in northeast, south, east, and north of the State of Amapá, and in a small portion northwest of the State of Maranhão (all states belonging to the northern region of Brazil). Our results provide information for policy making and quarantine measures, especially where S. hindustanicus is still absent in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data for the present study are available upon descent request from the corresponding author.

References

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Ashraf U, Peterson AT, Chaudhry MN, Ashraf I, Saqib Z, Rashid Ahmad S, Ali H (2017) Ecological niche model comparison under different climate scenarios: a case study of Olea spp in Asia. Ecosphere 8:e01825

    Article  Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866

    Article  Google Scholar 

  • Barry S, Elith J (2006) Error and uncertainty in habitat models. J Appl Ecol 43:413–423

    Article  Google Scholar 

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222(11):1810–1819

    Article  Google Scholar 

  • Benito BM, Martínez-Ortega MM, Munoz LM, Lorite J, Penas J (2009) Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodivers Conserv 18:2509–2520

    Article  Google Scholar 

  • Burman P (1989) A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 76:503–514

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) A practical information-theoretic approach Model selection and multimodel inference, 2nd edn. Springer, New York

    Google Scholar 

  • CABI, Undated, (2020) CABI Compendium: Status inferred from regional distribution. CABI, Wallingford

    Google Scholar 

  • Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20:37–46

    Article  Google Scholar 

  • Corsi F, Duprè E, Boitani L (1999) A large-scale model of wolf distribution in Italy for conservation planning. Conserv Biol 13:150–159

    Article  Google Scholar 

  • De Marco P, Nóbrega CC (2018) Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE 13:e0202403

    Article  Google Scholar 

  • De Andrade AFA, Velazco SJE, De Marco P (2019) Niche mismatches can impair our ability to predict potential invasions. Biol Invasions 21(10):3135–3150

    Article  Google Scholar 

  • El-Gabbas A, Dormann CF (2018) Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted poisson regression and Maxent. Ecography 41:1161–1172

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Article  Google Scholar 

  • EPPO (2020) EPPO Global Database (available online). https://gd.eppo.int/taxon/SCZTHI/categorization. Accessed 20 June 2020

  • Fantine AK (2011) Schizotetranychus hindustanicus (Hirst, 1924) (Acari: Tetranychidae): rotas de risco e potencial de impacto para a citricultura brasileira. Dissertation, Universidade Federal de Viçosa.

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24(1):38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  • Figueirêdo F, Fidelis E, Pereira R, Santos J, Negrini M, Oliveira D, Moraes G (2019) Geographical distribution of Schizotetranychus hindustanicus and associated mites in Roraima, Brazil. Neotrop Entomol 48:866–872

    Article  Google Scholar 

  • Fitzpatrick MC, Gotelli NJ, Ellison AM (2013) MaxEnt versus MaxLike: empirical comparisons with ant species distributions. Ecosphere 4:1–15

    Article  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J, Hijmans MRJ (2017) Package ‘dismo.’ Circles 9:1–68

    Google Scholar 

  • Hijmans RJ, Elith J (2013) Species distribution modelling with R. R CRAN Project. http://www2.uaem.mx/r-mirror/web/packages/dismo/vignettes/sdm.pdf

  • Hirst S (1924) LV—On some new species of red spider. J Nat Hist 14:522–527

    Google Scholar 

  • Huerta MAO, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Revista Mexicana De Biodiversidad 1:205–216

    Google Scholar 

  • Hurvich CM, Tsai CL (1993) A corrected Akaike information criterion for vector autoregressive model selection. J Time Ser Anal 14:271–279

    Article  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620

    Article  Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón JOJM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13(12):2785–2797

    Article  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, Vol. 2, Montreal, Canada, 20–25 August 1995, pp. 1137–1145.

  • Leroy B, Delsol R, Hugueny B, Meynard CN, Barhoumi C, Barbet-Massin M, Bellard C (2018) Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J Biogeogr 45:1994–2002

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA Jr (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Mesa N (2010) Ácaros asociados a cítricos en Colombia. In: Primer Congreso Latinoamericano de Citricultura, 2010, p. 21.

  • Morales NS, Fernández IC, Baca-González V (2017) MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? Systematic Rev Peerj 5:e3093

    Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENM eval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205

    Article  Google Scholar 

  • Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191–203

    Article  Google Scholar 

  • Navia D, Marsaro AL Jr (2010) First report of the citrus hindu mite, Schizotetranychus hindustanicus (Hirst) (Prostigmata: Tetranychidae), in Brazil. Neotrop Entomol 39:140–143

    Article  Google Scholar 

  • Nienstaedt B, Marcano R (2009) Fluctuación poblacional y distribución vertical del ácaro Schizotetranychus hindustanicus (Hirst, 1924), sobre especies de Citrus. Entomotropica 24:57–63

    Google Scholar 

  • Nix H (1986) A biogeographic analysis of the Australian elapid snakes. In: Longmore R (ed) Atlas of Elapid Snakes of Australi, Australian Flora and Fauna Series. Australian Government Publishing Service, Australia

    Google Scholar 

  • Papeş M, Gaubert P (2007) Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Divers Distrib 13:890–902

    Article  Google Scholar 

  • Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT (2001) Predicting species’ geographic distributions based on ecological niche modeling. The Condor 103:599–605

    Article  Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson. Ecography 31:272–278

    Article  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Poorani J (2017) Stethorus spp. (Coleoptera: Coccinellidae) predatory on Schizotetranychus hindustanicus (Hirst) (Acari: Tetranychidae) from South India, including a new species and a new synonymy in Indian Stethorus. Zootaxa 4277:591–599

    Article  CAS  Google Scholar 

  • Quiróz M, Dorado I (2005) Eficiencia de tres productos comerciales en el control del ácaro hindú de las cítricas Schizotetranychus hindustanicus (Hisrt), en el laboratorio. In: Universidad del Zulia. Facultad de Agronomía. Dpto. Fitosanitario. Resumen de Congreso de Entomología Carlos Julio Rosales, 2005.

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

    Article  Google Scholar 

  • Ray D, Behera MD, Jacob J (2018) Evaluating ecological niche models: a comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc Natl Acad Sci India Sec b Biol Sci 88:1337–1343

    Article  Google Scholar 

  • Salzberg SL (1997) On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Min Knowl Disc 1:317–328

    Article  Google Scholar 

  • Saupe E et al (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecol Model 237:11–22

    Article  Google Scholar 

  • Shao G, Halpin PN (1995) Climatic controls of eastern North American coastal tree and shrub distributions. J Biogeogr 22(6):1083–1089. https://doi.org/10.2307/2845837

    Article  Google Scholar 

  • Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model 269:9–17

    Article  Google Scholar 

  • Sheikholeslamzadeh S, Sadeghi H (2010) First records of four mite species (Acari: Tetranychidae) in Iran. Appl Entomol Phytopathol 78:121–125

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  Google Scholar 

  • Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest resilience, biodiversity, and climate change. Secretariat of the Convention on Biological Diversity. Montreal Tech Series 43:1–67

    Google Scholar 

  • Thuiller W, Lavorel S, Araújo MB (2005) Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob Ecol Biogeogr 14:347–357

    Article  Google Scholar 

  • Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  Google Scholar 

  • Wenger SJ, Olden JD (2012) Assessing transferability of ecological models: an underappreciated aspect of statistical validation. Methods Ecol Evol 3:260–267

    Article  Google Scholar 

  • Wisz MS, Hijmans R, Li J, Peterson AT, Graham C, Guisan A, Group NPSDW (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

Download references

Acknowledgements

We thank Embrapa and the Brazilian National Council for Scientific and Technological Development (CNPq) for the financial support.

Funding

The Brazilian Agricultural Research Corporation funded this work—Embrapa, project number 131604030.00.00, developed at Embrapa Roraima.

Author information

Authors and Affiliations

Authors

Contributions

GA and EGF: made substantial contributions to the conception and design of the work; the acquisition, analysis, and interpretation of data used in the work. GA, EGF, CMM, and RSS: revised the work. GA, EGF, CMM, and RSS: approved the version to be published, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Ricardo Siqueira da Silva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaro, G., Fidelis, E.G., de Medeiros, C.M. et al. Risk analysis of the spread of the quarantine pest mite Schizotetranychus hindustanicus in Brazil. Exp Appl Acarol 88, 263–275 (2022). https://doi.org/10.1007/s10493-022-00760-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-022-00760-5

Keywords

Navigation