Skip to main content

Advertisement

Log in

Hydrology-driven environmental variability determines abiotic characteristics and Oribatida diversity patterns in a Sphagnum peatland system

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

We investigated oribatid mite communities in a Sphagnum-dominated boreal peatland system characterised by a mosaic of oligotrophic and meso-eutrophic areas. We aimed to determine the relative importance of environmental factors (pH, Sphagnum nutrient content, water table level, diversity of vascular plants and bryophytes in the surrounding plant community) and spatial variation in influencing abundance, diversity and community composition of aquatic and terrestrial oribatid mites. Among environmental variables, water table level (micro-topography), pH, and K in Sphagnum tissues were the main predictors of Oribatida community structure. Aquatic species were associated with pools; two terrestrial species—Hoplophthiracarus illinoisensis and Nothrus pratensis—were associated with oligotrophic hummocks; the rest of terrestrial species were associated with dryer mesotrophic and eutrophic habitats. Low water table depth (hummocks), high local plant diversity, and high P in Sphagnum tissues were predictors of high abundance of terrestrial Oribatida. Species richness of terrestrial Oribatida was linked with low water table and high plant diversity. For aquatic Oribatida abundance, water table depth was the single most important predictor variable. Plot trophic class (its status on the peatland poor-rich gradient assigned based on plant indicator species) was also a significant predictor of terrestrial Oribatida abundance, richness, and community structure. Spatial structuring was important for terrestrial Oribatida community composition, weak (P < 0.10) for terrestrial Oribatida abundance and richness, and not significant for aquatic Oribatida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peatlands: a review. Soil Biol Biochem 57:979–994

    Article  CAS  Google Scholar 

  • Anderson AS, Davis RB, Janssens JA (1995) Relationships of bryophytes and lichens to environmental gradients in Maine peatlands. Vegetatio 120:147–259

    Article  Google Scholar 

  • Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E, Saarinen T, Vasander H, Wallen B (2001) Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob Change Biol 7:591–598

    Article  Google Scholar 

  • Borcard D, von Ballmoos VC (1997) Oribatid mites (Acari, Oribatida) of a primary peat bog pasture transition in the Swiss Jura Mountains. Ecoscience 4:470–479

    Article  Google Scholar 

  • Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structures of ecological data at all scales. Ecology 85:1826–1832

    Article  Google Scholar 

  • Bragazza L, Gerdol R (2002) Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? J Veg Sci 13:473–482

    Article  Google Scholar 

  • Bragazza L, Freeman C, Jones T et al (2006) Atmospheric nitrogen deposition promotes carbon loss from peat bogs. PNAS 103:19386–19389

    Article  CAS  PubMed  Google Scholar 

  • Cadotte MW, Tucker CM (2017) Should environmental filtering be abandoned? Trends Ecol Evol. https://doi.org/10.1016/j.tree.2017.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesson P (2000) Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst 31:343–366

    Article  Google Scholar 

  • Clarke KR, Gorley RN, Somerfield PJ, Warwick RM (2014) Change in marine communities: an approach to statistical analysis and interpretation, 3rd edn. PRIMER-E, Plymouth

    Google Scholar 

  • Comte L, Cucherousset J, Boulêtreau S, Olden JD (2016). Resource partitioning and functional diversity of worldwide freshwater fish communities. Ecosphere. https://doi.org/10.1002/ecs2.1356

    Article  Google Scholar 

  • Donaldson GM (1996) Oribatida (Acari) associated with three species of Sphagnum at Spruce Hole Bog, New Hampshire, USA. Can J Zool 74:1713–1720

    Article  Google Scholar 

  • Eurola S, Holappa K (1985) The Finnish mire type system. Aquilo Ser Bot 21:101–110

    Google Scholar 

  • Eurola S, Huttunen A (2006) Mire plant species and their ecology in Finland. In: Lindholm T, Heikkilä R (eds) Finland—land of mires. The Finnish environment 23/2006. Finnish Environment Institute, Helsinki, pp 127–144

    Google Scholar 

  • Genuer R, Poggi J-M, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognit Lett 31:2225–2236

    Article  Google Scholar 

  • Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007) Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Glob Change Biol 13:1810–1821

    Article  Google Scholar 

  • Gilbert D, Amblard C, Bourdier G, Francez A-J (1998) Short-term effect of nitrogen enrichment on the microbial communities of a peatland. Hydrobiologia 373:111–119

    Article  Google Scholar 

  • Guasch H, Marti E, Sabater S (1995) Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshw Biol 33:373–383

    Article  Google Scholar 

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279

    Article  Google Scholar 

  • Hájek T (2009) Habitat and species controls on Sphagnum production and decomposition in a mountain raised bog. Bor Environ Res 14:947–958

    Google Scholar 

  • Hajkova P, Hajek M (2007) Sphagnum distribution patterns along environmental gradients in Bulgaria. J Bryol 29:18–26

    Article  Google Scholar 

  • Hansen RA, Coleman DC (1998) Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari:Oribatida) in litterbags. Appl Soil Ecol 9:17–23

    Article  Google Scholar 

  • Hatcher L (1996) Using SAS® PROC CALIS for path analysis: an introduction. Struct Equ Model 3:176–192

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hill BH, Elonen CM, Jicha TM, Kolka RK, Lehto LLP, Sebestyen SD, Seifert-Monson LR (2014) Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120:203–224

    Article  CAS  Google Scholar 

  • HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 43:227–248

    Article  Google Scholar 

  • Ignatov MS, Ignatova EA (2003) Moss flora of the Middle European Russia. Sphagnaceae—Hedwigiaceae. Arctoa 1(suppl 1):1–608 (In Russian)

    Article  Google Scholar 

  • Ignatov MS, Afonina OM, Ignatova EA et al (2006) Check-list of mosses of East Europe and North Asia. Arctoa 15:1–130. https://doi.org/10.15298/arctoa.15.01

    Article  Google Scholar 

  • Jassey VEJ, Meyer C, Dupuy C, Bernard N, Mitchell EAD, Toussaint M-L, Metian M, Chatelain AP, Gilbert D (2013) To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a sphagnum peatland? Microb Ecol 66:571e580

    Article  Google Scholar 

  • Johnson MG, Granath G, Tahvanainen T, Pouliot R, Stenøien HK, Rochefort L, Rydin H, Shaw AJ (2014) Evolution of niche preference in Sphagnum peat mosses. Evolution 69:90–103

    Article  PubMed  Google Scholar 

  • Kaneko N, Salamanca E (1999) Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak–pine stand in Japan. Ecol Res 14:131–138

    Article  Google Scholar 

  • Kaneko N, Sugawara Y, Miyamoto T, Hasegawa M, Hiura T (2005) Oribatid mite community structure and tree species diversity: a link? Pedobiologia 49:521–528

    Article  Google Scholar 

  • Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  • Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM (2014) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol. https://doi.org/10.1111/1365-2435.12345

    Article  Google Scholar 

  • Lafleur PM, Hember RA, Admiral SM, Roulet NT (2005) Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrol Process 19:3533–3550

    Article  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lehmitz R, Maraun M (2016) Small-scale spatial heterogeneity of stable isotopes signatures (d15N, d13C) in Sphagnum sp. transfers to all trophic levels in oribatid mites. Soil Biol Biochem 100:242–251

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Klees H (2003) N deposition affects N availability in interstitial water, growth of Sphagnum and invasion of vascular plants in bog vegetation. New Phytol 157:339–347

    Article  Google Scholar 

  • Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7:793–804

    Article  CAS  Google Scholar 

  • Limpens J, Granath G, Gunnarsson U et al (2011) Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol 191:496–507

    Article  CAS  PubMed  Google Scholar 

  • Limpens J, Bohlin E, Nilsson MB (2017) Phylogenetic or environmental control on the elemental and organo-chemical composition of Sphagnum mosses? Plant Soil 417:69–85

    Article  CAS  Google Scholar 

  • Markkula I (1986) Comparison of the communities of oribatids (Acari: Cryptostigmata) of virgin and forest ameliorated pine bogs. Ann Zool Fennici 23:33–38

    Google Scholar 

  • Mieczan T, Adamczuk M, Pawlik-Skowrońska B, Toporowska M (2015) Eutrophication of peatbogs: consequences of P and N enrichment for microbial and metazoan communities in mesocosm experiments. Aquat Microb Ecol. https://doi.org/10.3354/ame01727

    Article  Google Scholar 

  • Minor MA, Ermilov SG, Philippov DA, Prokin AA (2016) Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs. Exp Appl Acarol. https://doi.org/10.1007/s10493-016-0075-9

    Article  PubMed  Google Scholar 

  • Murphy MA, Evans JS, Storfer AS (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261

    Article  Google Scholar 

  • Nielsen UN, Osler GHR, Campbell CD, Neilson R, Burslem DFRP, van der Wal R (2010) The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS One 5(7):e11567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen UN, Osler GHR, Campbell CD, Burslem DFRP, van der Wal R (2012) Predictors of fine-scale spatial variation in soil mite and microbe community composition differ between biotic groups and habitats. Pedobiologia 55:83–91

    Article  Google Scholar 

  • Perez-Harguindeguy N, Diaz S, Cornelissen JH, Venramini F, Cabido M, Castellanos A (2000) Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218:21–30

    Article  CAS  Google Scholar 

  • Philippov DA (2015) Flora Shichengskogo vodno-bolotnogo ugodya Vologodskaya oblast [Flora of wetland ‘Shichengskoe’ (Vologda Region, Russia)]. Phytodiversity of Eastern Europe IX. pp 86–117 (in Russian with English summary)

  • Philippov DA, Boychuk MA (2015) Mkhi Shichengskogo landshaftnogo zakaznika (Vologodskaya oblast) [Mosses of the Shichengskiy Landscape Reserve (Vologda Region)]. Vestnik of Northern (Arctic) Federal University, ser. Nat Sci 2:80–89 (in Russian with English summary)

    Google Scholar 

  • Ruuhijärvi R, Lindholm T (2006) Ecological gradients as the basis of Finnish mire site type system. In: Lindholm T, Heikkilä R (eds) Finland—land of mires. The Finnish Environment 23/2006. Finnish Environment Institute, Helsinki, pp 119–126

    Google Scholar 

  • Rydin H, Jeglum JK (2013) The biology of peatlands, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Rydin H, Sjörs H, Löfroth M (1999) Mires. Acta Phytogeogr Suec 84:91–112

    Google Scholar 

  • Seniczak A (2011) Oribatid mites (Acari, Oribatida) and their seasonal dynamics in a floating bog mat in Jeziorka Kozie Reserve, Tuchola Forest (Poland). Biol Lett 48:3–11

    Article  Google Scholar 

  • Seniczak A, Seniczak S, Kowalski J, Graczyk R, Mistrzak M (2014) Mites (Acari) at the edges of bog pools in Orawa–Nowy-Targ Basin (S Poland), with particular reference to the Oribatida. Biol Lett 51:93–102

    Article  Google Scholar 

  • Spitzer K, Danks HV (2006) Insect biodiversity of boreal peat bogs. Annu Rev Entomol 51:137–161

    Article  CAS  PubMed  Google Scholar 

  • Stary J (2006) Contribution to the knowledge of the oribatid mite fauna (Acari, Oribatida) of peat bogs in Bohemian Forest. Silva Gabreta 12:35–47

    Google Scholar 

  • Strakova P, Niemi RM, Freeman C, Peltoniemi K, Toberman H, Heiskanen I, Fritze H, Laiho R (2011) Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes. Biogeosciences 8:2741–2755

    Article  CAS  Google Scholar 

  • Subías LS (2018) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (excepto fósiles). p 605. http://bba.bioucm.es/cont/docs/RO_1.pdf. Accessed 05 Dec 2018

  • Sutherland WJ, Freckleton RP, Godfray HCJ et al (2013) Identification of 100 fundamental ecological questions. J Ecol. https://doi.org/10.1111/1365-2745.12025

    Article  Google Scholar 

  • Tahvanainen T (2004) Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of the north-eastern Fennoscandian Shield. Folia Geobot 39:353–369

    Article  Google Scholar 

  • Tarnocai C, Stolbovoy V (2006) Northern peatlands: their characteristics, development and sensitivity to climate change. Dev Earth Surf Proc 9:17–51

    Article  Google Scholar 

  • Tarras-Wahlberg N (1961) The Oribatei of a central Swedish bog and their environment. Oikos 4:1–56

    Google Scholar 

  • Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ, Monteith DT, Rowe EC, Toberman H (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci Proc Impacts 16:1608–1617

    Article  CAS  Google Scholar 

  • Toberman H, Tipping E, Boyle JF, Helliwell RC, Lilly A, Henrys PA (2015) Dependence of ombrotrophic peat nitrogen on phosphorus and climate. Biogeochemistry 125:11–20

    Article  CAS  Google Scholar 

  • Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuiitla E-S (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49–67

    Article  CAS  Google Scholar 

  • van den Elzen E, Kox MAR, Harpenslager SF, Hensgens G, Fritz C, Jetten MSM, Ettwig KF, Lamers LPM (2017) Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth. Biogeosciences 14:1111–1122

    Article  CAS  Google Scholar 

  • van den Elzen E, van den Berg LJL, van der Weijden B, Fritz C, Sheppard LJ, Lamers LPM (2018) Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2017.08.102

    Article  PubMed  Google Scholar 

  • Weigmann G (1991) Oribatid communities in transects from bogs to forests in Berlin indicating the biotope qualities. Mod Acarol 1:359–364

    Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). Die Tierwelt Deutschalnds. 76 Teil. Goecke and Evers, Keltern

    Google Scholar 

  • Weigmann G, Deichsel R (2006) Acari: limnic Oribatida. In: Gerecke R (ed) Chelicerata: Araneae, Acari I. Susswasserfauna von Mitteleuropa, Band 7/2-1. Spektrum Akademischer Verlag, Heidelberg, pp 89–112

    Chapter  Google Scholar 

  • Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Article  Google Scholar 

  • White JR, Reddy KR (2000) Influence of phosphorus loading on organic nitrogen mineralization of everglades soils. Soil Sci Soc Am J 64:1525–1534

    Article  CAS  Google Scholar 

  • Winkler M, Illmer P, Querner P, Fischer BM, Hofmann K, Lamprecht A, Praeg N, Schied J, Steinbauer K, Pauli H (2018) Side by side? Vascular plant, invertebrate, and microorganism distribution patterns along an alpine to nival elevation gradient. Arct Antarct Alp Res 50:1–13

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alexander A. Prokin (Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia) for funding chemical analysis, Victoria V. Yurchenko (Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia) for pH analysis, and Dr. Gillian Rapson (School of Agriculture and Environment, Massey University, New Zealand) for discussion of Sphagnum bogs. We also thank the anonymous reviewers for helpful suggestions which improved the paper. Fieldwork was carried out as a part of the Russian Science Foundation Grant no. 14-14-01134. Work by D. A. Philippov was supported within the framework of the state assignments from the Russian Federal Agency for Scientific Organizations (IBIW RAS theme no. AAAA-A18-118012690099-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Minor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minor, M.A., Ermilov, S.G. & Philippov, D.А. Hydrology-driven environmental variability determines abiotic characteristics and Oribatida diversity patterns in a Sphagnum peatland system. Exp Appl Acarol 77, 43–58 (2019). https://doi.org/10.1007/s10493-018-0332-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-018-0332-1

Keywords

Navigation