Skip to main content

Advertisement

Log in

Molecular diagnosis of the tick-borne pathogen Anaplasma marginale in cattle blood samples from Nigeria using qPCR

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Tick-borne diseases (TBDs) are some of the most important animal health and management problems in Africa, including Nigeria. This study aims to determine the prevalence of an important TBD, anaplasmosis, in a North-central region of Nigeria. Blood samples were collected from cattle and stored on Whatman FTA® cards. Information on village, age and sex associated with each cattle was also recorded. The packed red blood cell volume (PCV) for each blood sample was determined. After DNA extraction, pathogen presence was evaluated by TaqMan® based qPCR of which 75.9 % of the cattle tested positive for Anaplasma marginale. Statistical analysis revealed that the presence of A. marginale infection differed significantly between cattle age groups. However, there was no significant difference in the prevalence of this pathogen between the sexes or among cattle grouped by PCV level. Finally, using a highly sensitive molecular method our pioneer study contributes to the improvement of the current knowledge regarding tick-borne pathogens that seriously affect animal health in specific areas of Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DNA:

Deoxyribonucleic acid

EDTA:

Ethylenediaminetetraacetic acid

LGA:

Local Government Area

PCR:

Polymerase chain reaction

PCV:

Packed cell volume

qPCR:

Real time PCR

rRNA:

Ribosomal ribonucleic acid

TBDs:

Tick-borne diseases

References

  • Ahmed H, MacLeod E, Hide G, Welburn S, Picozzi K (2011) The best practice for preparation of samples from FTA(R)cards for diagnosis of blood borne infections using African trypanosomes as a model system. Parasit Vectors 4:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Aiello SE (1998) The Merck veterinary manual. Wiley, Hoboken

    Google Scholar 

  • Awad H, Antunes S, Galindo RC, do Rosário VE, de la Fuente J, Domingos A, El Hussein AM (2011) Prevalence and genetic diversity of Babesia and Anaplasma species in cattle in Sudan. Vet Parasitol 181:146–152

    Article  PubMed  Google Scholar 

  • Bacanelli GM, Ramos CAN, Araújo FR (2014) Molecular diagnosis of Anaplasma marginale in cattle: quantitative evaluation of a real-time PCR (Polymerase Chain Reaction) based on msp5 gene. Pesqui Vet Bras 34:29–33

    Article  Google Scholar 

  • Becker S, Franco JR, Simarro PP, Stich A, Abel PM, Steverding D (2004) Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagn Microbiol Infect Dis 50:193–199

    Article  CAS  PubMed  Google Scholar 

  • Bell-Sakyi L, Koney EBM, Dogbey O, Walker AR (2004) Incidence and prevalence of tick-borne haemoparasites in domestic ruminants in Ghana. Vet Parasitol 124:25–42

    Article  CAS  PubMed  Google Scholar 

  • Bilgiç HB, Karagenç T, Simuunza M, Shiels B, Tait A, Eren H, Weir W (2013) Development of a multiplex PCR assay for simultaneous detection of Theileria annulata, Babesia bovis and Anaplasma marginale in cattle. Exp Parasitol 133:222–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock R, Jackson L, de Vos A, Jorgensen W (2004) Babesiosis of cattle. Parasitology 129:S247–S269

    Article  PubMed  Google Scholar 

  • Bowie MV, de la Fuente J, Kocan KM, Blouin EF, Barbet AF (2002) Conservation of major surface protein 1 genes of Anaplasma marginale during cyclic transmission between ticks and cattle. Gene 282:95–102

    Article  CAS  PubMed  Google Scholar 

  • Carelli G, Decaro N, Lorusso A, Elia G, Lorusso E, Mari V, Ceci L, Buonavoglia C (2007) Detection and quantification of Anaplasma marginale DNA in blood samples of cattle by real-time PCR. Vet Microbiol 124:107–114

    Article  CAS  PubMed  Google Scholar 

  • Criado-Fornelio A, Buling A, Asenzo G, Benitez D, Florin-Christensen M, Gonzalez-Oliva A, Henriques G, Silva M, Alongi A, Agnone A, Torina A, Madruga CR (2009) Development of fluorogenic probe-based PCR assays for the detection and quantification of bovine piroplasmids. Vet Parasitol 162:200–206

    Article  CAS  PubMed  Google Scholar 

  • Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 28:437–446

    Article  PubMed  Google Scholar 

  • de Castro JJ (1997) Sustainable tick and tickborne disease control in livestock improvement in developing countries. Vet Parasitol 71:77–97

    Article  PubMed  Google Scholar 

  • de la Fuente J, Garcia-Garcia JC, Blouin EF, Kocan KM (2001) Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. Int J Parasitol 31:145–153

    Article  PubMed  Google Scholar 

  • El-Ashker M, Hotzel H, Gwida M, El-Beskawy M, Silaghi C, Tomaso H (2015) Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray. Vet Parasitol 207:329–334

    Article  CAS  PubMed  Google Scholar 

  • Figueroa JV, Chieves LP, Johnson GS, Buening GM (1993) Multiplex polymerase chain reaction based assay for the detection of Babesia bigemina, Babesia bovis and Anaplasma marginale DNA in bovine blood. Vet Parasitol 50:69–81

    Article  CAS  PubMed  Google Scholar 

  • Gachohi JM, Ngumi PN, Kitala PM, Skilton RA (2010) Estimating seroprevalence and variation to four tick-borne infections and determination of associated risk factors in cattle under traditional mixed farming system in Mbeere District, Kenya. Prev Vet Med 95:208–223

    Article  CAS  PubMed  Google Scholar 

  • Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14

    Article  PubMed  Google Scholar 

  • Jonsson NN, Bock RE, Jorgensen WK, Morton JM, Stear MJ (2012) Is endemic stability of tick-borne disease in cattle a useful concept? Trends Parasitol 28:85–89

    Article  PubMed  Google Scholar 

  • Kamani J, Sannusi A, Egwu OK, Dogo GI, Tanko TJ, Kemza S, Tafarki AE, Gbise DS (2010) Prevalence and significance of haemoparasitic infections of cattle in North-central, Nigeria. Vet World 3:445–448

    Article  Google Scholar 

  • Kamani J, Jwander LD, Ubali Z (2011) Demonstration of vermicles of Babesia species in haemolymph smears of Amblyomma variegatum in Nigeria. J Adv Vet Res 1:1–3

    Google Scholar 

  • Kivaria FM (2006) Estimated direct economic costs associated with tick-borne diseases on cattle in Tanzania. Trop Anim Health Prod 38:291–299

    Article  CAS  PubMed  Google Scholar 

  • Kocan KM, Blouin EF, Barbet AF (2000) Anaplasmosis control: past, present, and future. Ann N Y Acad Sci 916:501–509

    Article  CAS  PubMed  Google Scholar 

  • Kocan KM, de la Fuente J, Guglielmone AA, Meléndez RD (2003) Antigens and alternatives for control of Anaplasma marginale infection in cattle. Clin Microbiol Rev 16:698–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorusso V, Picozzi K, de Bronsvoort B, Majekodunmi A, Dongkum C, Balak G, Igweh A, Welburn S (2013) Ixodid ticks of traditionally managed cattle in central Nigeria: where Rhipicephalus (Boophilus) microplus does not dare (yet?). Parasit Vectors 6:171

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins TM, Pedro OC, Caldeira RA, do Rosário VE, Neves L, Domingos A (2008) Detection of bovine babesiosis in Mozambique by a novel seminested hot-start PCR method. Vet Parasitol 153:225–230

    Article  CAS  PubMed  Google Scholar 

  • McGarey DJ, Barbet AF, Palmer GH, McGuire TC, Allred DR (1994) Putative adhesins of Anaplasma marginale: major surface polypeptides 1a and 1b. Infect Immun 62:4594–4601

    CAS  PubMed  PubMed Central  Google Scholar 

  • McInroy RA (1954) A micro-haematocrit for determining the packed cell volume and haemoglobin concentration on capillary blood. J Clin Pathol 7:32–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlhorn H, Schein E (1993) The piroplasms: “A long story in short” or “Robert Koch has seen it”. Eur J Protistol 29:279–293

    Article  CAS  PubMed  Google Scholar 

  • Monis PT, Giglio S, Keegan AR, Andrew Thompson RC (2005) Emerging technologies for the detection and genetic characterization of protozoan parasites. Trends Parasitol 21:340–346

    Article  CAS  PubMed  Google Scholar 

  • Obi TU, Anosa VO (1980) Haematological studies on domestic animals in Nigeria. Zentralblatt für Veterinärmedizin Reihe B 27:789–797

    Article  CAS  Google Scholar 

  • Ogo NI, de Mera IG, Galindo RC, Okubanjo OO, Inuwa HM, Agbede RI, Torina A, Alongi A, Vicente J, Gortazar C, de la Fuente J (2012) Molecular identification of tick-borne pathogens in Nigerian ticks. Vet Parasitol 187:572–577

    Article  CAS  PubMed  Google Scholar 

  • Okuthe OS, Buyu GE (2006) Prevalence and incidence of tick-borne diseases in smallholder farming systems in the western-Kenya highlands. Vet Parasitol 141:307–312

    Article  CAS  PubMed  Google Scholar 

  • Plackett RL (1983) Karl Pearson and the Chi squared test. Int Stat Rev Revue Internationale de Statistique 51:59–72

    Google Scholar 

  • Reye AL, Arinola OG, Hübschen JM, Muller CP (2012) Pathogen prevalence in ticks collected from the vegetation and livestock in Nigeria. Appl Environ Microbiol 78:2562–2568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simuunza M, Weir W, Courcier E, Tait A, Shiels B (2011) Epidemiological analysis of tick-borne diseases in Zambia. Vet Parasitol 175:331–342

    Article  PubMed  Google Scholar 

  • Stolovitzky G, Cecchi G (1996) Efficiency of DNA replication in the polymerase chain reaction. Proc Natl Acad Sci 93:12947–12952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AS, Groocock CM, Kariuki DP (1988) Integrated control of ticks and tick-borne diseases of cattle in Africa. Parasitology 96:403–432

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Rosângela Zacarias Machado (Universidade Estadual Paulista—Faculdade de Ciências Agrárias e Veterinárias, Brazil) for the Anaplasma marginale control. We would also like to thank the staff of the Department of Veterinary Services, Kwara State Ministry of Agriculture for providing field support and all the farmers that participated in the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana Ferrolho.

Ethics declarations

Conflict of interest

The authors declare no competing personal or financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elelu, N., Ferrolho, J., Couto, J. et al. Molecular diagnosis of the tick-borne pathogen Anaplasma marginale in cattle blood samples from Nigeria using qPCR. Exp Appl Acarol 70, 501–510 (2016). https://doi.org/10.1007/s10493-016-0081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-016-0081-y

Keywords

Navigation