Skip to main content
Log in

The effect of herbivore faeces on the edaphic mite community: implications for tapeworm transmission

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

Oribatid mites may be of epidemiological and medical importance because several species have been shown to serve as intermediate hosts for anoplocephalid tapeworms of wild and domestic animals. Despite their economic and conservation significance, relatively few studies examined factors influencing the effective number of oribatid mites that can serve as intermediate hosts. We examined variation in the structure of the edaphic arthropod community in functionally different territory parts of the Alpine marmot (Marmota marmota latirostris), a known definitive host of a prevalent anoplocephalid tapeworm, Ctenotaenia marmotae. We used a field experiment to test whether the abundance of oribatid mites in marmot pastures is affected by the presence of fresh herbivore faeces. We found that the abundance of soil and litter dwelling oribatid mites in marmot pastures did not change shortly after faeces addition. In contrast, numbers of other predominant soil–litter and phoretic microarthropods increased after faeces addition. The abundance of the two predominant phoretic mites colonizing the faeces was inversely related to the abundance of oribatid mites. In contrast, the abundance of a ubiquitous soil–litter mesostigmatid mite was a positive function of oribatid numbers. Although absolute numbers of oribatid mites did not change after faeces addition, our study suggests that, depending on soil quality or type, the probability of tapeworm egg ingestion by oribatid mites can be reduced due to increased interspecific prey-predatory and trophic interactions. Latrine site selection in Alpine marmots is consistent with a reduced probability of tapeworm transmission by oribatids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bassano B, Sabatier B, Rossi L, E. Macchi E (1992) Parasitic fauna of the intestinal tracts of Marmota marmota in the western Alps. In: Bassano B, Durio P, Gallo Ursi U, Macchi E (ed) Proceedings of 1st international symposium on Alpine marmot and on genus Marmota, Torino, pp 13–24

  • Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes. R package version 0.999999-0. http://CRAN.R-project.org/package=lme4. Accessed 1 Jan 2013

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423

    Article  Google Scholar 

  • Blahout M (1971) A contribution to the natural history of the Alpine marmot (Marmota marmota L.). In: Marček A (ed) Proceedings of works about the Tatra National Park 13, Martin, pp 243–285 (in Slovak)

  • Bregetova NG, Wainstein BA, Kadite BA, Koroleva EV, Petrova AD, Tikhomirov SI, Shcherbak GI (1977) Identification keys to soil inhabiting mites. Mesostigmata, Nauka, Leningrad (in Russian)

    Google Scholar 

  • Brown SP, Renaud F, Guegan J-F, Thomas F (2001) Evolution of trophic transmission in parasites: the need to reach a mating place? J Evol Biol 14:815–820

    Article  Google Scholar 

  • Bulanova-Zakhvatkina EM, Vainstein BA, Volgin BI, Giljarov MS, Dolosova LD, Krivolutskij DA, Lange AB, Sevastianov VD, Sitnikova LG, Khaldybina ES (1975) Identification key of the soil inhabiting mites (Sarcoptiformes). Nauka, Moscow (in Russian)

    Google Scholar 

  • Callait MP, Gauthier D (2000) Parasite adaptations to hibernation in Alpine marmots (Marmota marmota). In: Heldmaier G, Klingenspor M (ed) Life in the cold. 11th international hibernation symposium, Springer, Heidelberg, pp 139–146

  • Camerik AM (2010) Pediculaster–host relationships (Acari: Siteroptidae). In: Sabelis MW, Bruin J (eds) Trends in acarology: proceedings of the 12th international congress. Springer, Netherlands, pp 337–342

    Google Scholar 

  • Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Article  Google Scholar 

  • Chao A, Shen T-J (2010) Program SPADE (Species prediction and diversity estimation). Program and user’s guide. http://chao.stat.nthu.edu.tw. Accessed 1 Jan 2013

  • Chao A, Jost L, Chiang SC, Jiang Y-H, Chazdon R (2008) A two-stage probabilistic approach to multiple-community similarity indices. Biometrics 64:1178–1186

    Article  PubMed  Google Scholar 

  • Choisy M, Brown SP, Lafferty KD, Thomas F (2003) Evolution of trophic transmission in parasites: why add intermediate hosts? Am Nat 162:172–181

    Article  PubMed  Google Scholar 

  • Chovancová B, Šoltésová A (1988) The trophic base and feeding activity of the Alpine marmot (Marmota marmota latirostris Kratochvíl, 1961). In: Strnka M, Marček A (eds) Proceedings of works about the Tatra National Park 28. Osveta, Martin, pp 71–135 (in Slovak)

    Google Scholar 

  • Daniel M (1974) Trombiculidae. In: Zmoray I (ed) Proceedings of works about the Tatra National Park 16. Osveta, Martin, p 95

    Google Scholar 

  • Denegri GM (1993) Review of oribatid mites as intermediate hosts of tapeworms of the Anoplocephalidae. Exp Appl Acarol 17:567–580

    Article  Google Scholar 

  • Denegri GM, de Alzuet AB (1992) Seasonal variation of oribatid mite (Acarina) populations and their relationship to sheep cestodiasis in Argentina. Vet Parasitol 42:157–161

    Article  CAS  PubMed  Google Scholar 

  • Ebermann E (1976) Oribatiden (Oribatei, Acari) als Zwischenwirte des Murmeltier-Bandwurmes Ctenotaenia marmotae (Frölich, 1802). Parasitol Res 50:303–312 (in German)

    CAS  Google Scholar 

  • Edwards CA, Lofty JR (1969) The influence of agricultural practice on soil microarthropod populations. In: Sheals JG (ed) The soil ecosystem, Syst Assoc Publ 8, London, pp 237–247

  • Farish DJ, Axtell RC (1971) Phoresy redefined and examined in Macrocheles muscaedomesticae (Acarina: Macrochelidae). Acarologia 13:16–29

    Google Scholar 

  • Floate KD (2011) Arthropods in cattle dung on Canada’s grasslands. In: Floate KD (ed) Arthropods of Canadian Grasslands (vol 2): inhabitants of a changing landscape, biological survey of Canada, pp 71–88

  • Fritz GN (1985) A consideration of alternative intermediate hosts for Moniezia expansa (Cestoda, Anoplocephalidae). Proc Helminthol Soc Wash 52:51–53

    Google Scholar 

  • Gilbert KA (1997) Red howling monkey use of specific defecation sites as a parasite avoidance strategy. Anim Behav 54:451–455

    Article  PubMed  Google Scholar 

  • Gortázar C, Herrero J, García-Serrano A, Lucientes J, Luco DF (1996) Preliminary data on the parasitic fauna of the digestive system of Marmota marmota in the Western Pyrenees. In: Le Berre M, Ramousse R, Le Guelte L (eds) Biodiversity in marmots. International Marmot Network, Moscow, Russia, pp 105–108

    Google Scholar 

  • Gulvik M (2007) Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Pol J Ecol 55:415–440

    Google Scholar 

  • Halašková V (1974) Zerconidae. In: Zmoray I (ed) Proceedings of works about the Tatra National Park 16. Osveta, Martin, pp 87–88 (in Slovak)

    Google Scholar 

  • Haq MA (1988) An appraisal on oribatid vectors. Bicovas 1:93–98

    Google Scholar 

  • Herrero J, García-González R, García-Serrano A (2002) Research on Alpine marmot (Marmota marmota) in the Spanish Pyrenees. In: Armitage KB, Rumiantsev VU (eds) Holarctic marmots as a factor of biodiversity. International Marmot Network, Cheboksary, Russia, pp 190–197

    Google Scholar 

  • Hutchings MR, Athanasiadou S, Kyriazakis I, Gordon IJ (2003) Can animals use foraging behaviour to combat parasites? Proc Nutr Soc 62:361–370

    Article  PubMed  Google Scholar 

  • Jałoszyński P, Beutel RG (2012) Functional morphology and evolution of specialized mouthparts of Cephenniini (Insecta, Coleoptera, Scydmaeninae, Staphylinidae). Arthropod Struct Dev 41:593–607

    Article  PubMed  Google Scholar 

  • Jordan ME (2001) Population dynamics of oribatid mites (Acari: Oribatida) on horse pastures of North Central Florida. Dissertation, University of Florida

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375

    Article  Google Scholar 

  • Jost JP, Jost YC (2004) Les marmottes: milieu naturel, vie sociale et hibernation. Editions Cabédita, St. Gingolph. (in French)

  • Kalúz S, Fenďa P (2005) Mites (Acari: Mesostigmata) of the family Ascidae of Slovakia. NOI Press, Bratislava

    Google Scholar 

  • Karč P (2006) A contribution to the knowledge about the population of the Alpine marmot (Marmota marmota L.) in the western part of the Low Tatras National Park (Prašivá—Ďumbier). Naturae Tutela 10:79–93 (in Slovak)

    Google Scholar 

  • Karg W (1993) Acari (Acarina), Milben, Parasitiformes (Anactinochaeta) Cohors Gamasina Leach, Raubmilben. Die Tierwelt Deutschlands 59, Gustav Fischer Verlag, Jena (in German)

  • Koehler HH (1999) Predatory mites (Gamasina, Mesostigmata). Agric Ecosyst Environ 74:395–410

    Article  Google Scholar 

  • Kozlov DP (1986) Collembola-possible intermediate hosts of Avitellina arctica (Cestoda, Anoplocephalata). Parazitologiia 20:73–74 (in Russian)

    CAS  PubMed  Google Scholar 

  • Krantz GW (1998) Reflections on the biology, morphology and ecology of the Macrochelidae. Exp Appl Acarol 22:125–137

    Article  CAS  PubMed  Google Scholar 

  • Krantz GW (2009) Habits and habitats. In: Krantz GW, Walter DE (eds) A manual to acarology, 3rd edn. Texas Tech University Press, Texas, pp 64–82

    Google Scholar 

  • Kratochvíl J (1961) Notes on the knowledge of the Alpine marmot in the High Tatras. Fol Zool 9:273–286 (in Czech)

    Google Scholar 

  • Lenti Boero D (2003) Long-term dynamics of space and summer resource use in the alpine marmot (Marmota marmota L.). Ethol Ecol Evol 15:309–327

    Article  Google Scholar 

  • Luxton M (1972) Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiol 21:434–463

    Google Scholar 

  • Mackiewicz JS (1988) Cestode transmission patterns. J Parasitol 74:60–71

    Article  CAS  PubMed  Google Scholar 

  • Manfredi MT, Zanin E, Rizzoli AP (1992) Helminth community on alpine marmots. In: Bassano B, Durio P, Gallo Orsi U, Macchi E (ed) Proc. 1st International symposium on Alpine marmot, Torino, pp 203–207

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383

    Article  Google Scholar 

  • Mašán P (2003) Macrochelid mites of Slovakia (Acari, Mesostigmata, Macrochelidae). NOI Press, Bratislava

    Google Scholar 

  • Mašán P, Fenďa P (2004) Zerconid mites of Slovakia (Acari, Mesostigmata, Zerconidae). Institute of Zoology SAS, Bratislava

    Google Scholar 

  • McAloon FM (2004) Oribatid mites as intermediate hosts of Anoplocephala manubriata, cestode of the Asian elephant in India. Exp Appl Acarol 32:181–185

    Article  PubMed  Google Scholar 

  • Moore JC, Walter DE, Hunt HW (1988) Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Ann Rev Entomol 33:419–435

    Article  Google Scholar 

  • Mrciak M (1974) Gamasoidea. In: Zmoray I (ed) Proceedings of works about the Tatra National Park 16. Osveta, Martin, pp 89–94 (in Slovak)

    Google Scholar 

  • Mullen GR, OConnor BM (2002) Mites (Acari). In: Mullen GR, Durden LA (eds) Medical and veterinary entomology. Elsevier, London, pp 449–516

    Chapter  Google Scholar 

  • Narsapur VS (1988) Pathogenesis and biology of Anoplocephaline cestodes of domestic animals. Ann Rec Vet 19:1–17

    CAS  Google Scholar 

  • Norton R, Behan-Pelletier VM (2009) Suborder Oribatida. In: Krantz GW, Walter DE (eds) A manual to acarology, 3rd edn. Texas Tech University Press, Texas, pp 430–564

    Google Scholar 

  • Novacký M (1978) Ethology of the Alpine marmot (Marmota marmota L. 1758) and the problem of an influence of civilization factors on innate behaviour. Psychologica 25:132–160 (in Slovak)

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2012) Vegan: community ecology package. R package version 2.0-5. http://CRAN.R-project.org/package=vegan. Accessed 1 Jan 2013

  • Parker GA, Chubb JC, Ball MA, Roberts GN (2003) Evolution of complex life cycles in helminth parasites. Nature 425:480–484

    Article  CAS  PubMed  Google Scholar 

  • Peschel K, Norton RA, Scheu S, Maraun M (2006) Do oribatid mites live in enemy-free space? Evidence from feeding experiments with the predatory mite (Pergamasus septentrionalis). Soil Biol Biochem 38:2985–2989

    Article  CAS  Google Scholar 

  • Poulin R (2011) The many roads to parasitism: a tale of convergence. In: Rollinson D, Hay SI (eds) Advances in parasitology, vol 74. Academic Press, Burlington, pp 1–40

    Google Scholar 

  • Preleuthner M, Calderola S, Lanfranchi P, Prosl H (1999) Parasiten des Alpenmurmeltieres (Marmota marmota): Systematik, Entwicklung, Verbreitung. Stapfia 63(146):77–92 (in German)

    Google Scholar 

  • Quinn GP, Keough MJ (2007) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/. Accessed 1 Jan 2013

  • Ramousse R, Le Berre M, Giboulet O (1999) La marmotte alpine. Le courrier de l’environnement de l’Inra 36:39–52 (in French)

    Google Scholar 

  • Ruf A, Beck L (2005) The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotox Environ Safe 62:290–299

    Article  CAS  Google Scholar 

  • Schuster R (1966) Hornmilben (Oribatei) als Bewohner des marinen Litorals. Veröffentlichungen des Institutes für Meeresforschung Bremerhaven, SoBd. 2:319–327 (in German)

    Google Scholar 

  • Schuster R, Coetzee L, Putteril JF (2000) Oribatid mites (Acari Oribatidae) as intermediate hosts of tapeworms of the family Anoplocephalidae (Cestoda) and the transmission of Moniezia expansa cysticercoids in South Africa. Onderstepoort J Vet Res 67:49–55

    CAS  PubMed  Google Scholar 

  • Sengbusch HG (1977) Review of oribatid mite–anoplocephalan tapeworm relationships (Acari; Oribatei: Cestoda: Anoplocephalidae). In: Dindal DL (ed) Biology of oribatid mites. Syracuse, New York, pp 87–102

    Google Scholar 

  • Shimano S (2004) Oribatid mites (Acari: Oribatida) as an intermediate host of anoplocephalid cestodes in Japan. Appl Entomol Zool 39:1–6

    Article  Google Scholar 

  • Smirnova LV, Kontrimavichus VL (1977) Collembolans—intermediate hosts of the cestodes of rodents of Chukotka. Doklady Akademii Nauk SSSR 236:771–772 (in Russian)

    Google Scholar 

  • Stunkard HW (1937) The life cycle of Moniezia expansa. Science 86:312

    Article  CAS  PubMed  Google Scholar 

  • Tenora F (1961) Discovery of a tapeworm Ctenotaenia marmotae/Frölich, 1802/Railliet 1893 in ČSSR. Fool Zool 10:396 (In Czech)

    Google Scholar 

  • van der Wal R, Irvine J, Stien A, Shepherd N, Albon SD (2000) Faecal avoidance and the risk of infection by nematodes in a natural population of reindeer. Oecologia 124:19–25

    Article  Google Scholar 

  • van Nieuwenhuizen LC, Verster AJM, Horak IG, Krecek RC, Grimbeek JR (1994) The seasonal abundance of oribatid mites (Acari: Cryptostigmata) on an irrigated Kikuyu grass pasture. Exp Appl Acarol 18:73–86

    Article  Google Scholar 

  • Wainstein BA, Volgin BI, Gilarov MS, Krivolutskij DA, Kuznetzov NN, Livshitz IZ, Mitrofanov VI, Sevastianov VD, Sosnina EF (1978) Identification key of the soil inhabiting mites (Trombidiformes). Nauka, Moscow (in Russian)

    Google Scholar 

  • Wallwork JA (1983) Oribatids in forest ecosystems. Ann Rev Entomol 28:109–130

    Article  Google Scholar 

  • Wallwork JA, Rodriguez JG (1961) Ecological studies on oribatid mites with particular reference to their role as intermediate hosts of anoplocephalid cestodes. J Econ Entomol 54:701–705

    Google Scholar 

  • Walter DE, Proctor HC (1999) Mites ecology, evolution and behaviour. CABI, Sydney

    Google Scholar 

  • Yannarella F, Led J, Mannaza J, Fernandez N, Denegri G (1981) Cestodiasis de rumiantes domesticos. Mem III Conq Arg Cs Vet:165–169 (in Spanish)

  • Zacharda M (1980) Soil mites of the family Rhagidiidae (Actinedida: Eupodoidea). Morphology, systematics, ecology. Acta Univ Carol Biol 1978:489–785

    Google Scholar 

Download references

Acknowledgments

We thank P. Mašán and B. Chovancová for discussion on mite and marmot ecology and help with literature. Two anonymous reviewers helped to improve the manuscript. Staff of the Zbojnícka chata cabin provided invaluable logistic support. This study was conducted under approval from the Ministry of Environment of the Slovak Republic (No. 4983/2010-2.1.1) and funded by a VEGA grant of the Ministry of Education, Science, Research and Sport of the Slovak Republic (No. 2/0176/10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radovan Václav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Václav, R., Kalúz, S. The effect of herbivore faeces on the edaphic mite community: implications for tapeworm transmission. Exp Appl Acarol 62, 377–390 (2014). https://doi.org/10.1007/s10493-013-9743-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-013-9743-1

Keywords

Navigation