Skip to main content
Log in

The second order projection method in time for the time-dependent natural convection problem

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider the second-order projection schemes for the time-dependent natural convection problem. By the projection method, the natural convection problem is decoupled into two linear subproblems, and each subproblem is solved more easily than the original one. The error analysis is accomplished by interpreting the second-order time discretization of a perturbed system which approximates the time-dependent natural convection problem, and the rigorous error analysis of the projection schemes is presented. Our main results of the second order projection schemes for the time-dependent natural convection problem are that the convergence for the velocity and temperature are strongly second order in time while that for the pressure is strongly first order in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Araya, G.R. Barrenechea, A. H. Poza, F. Valentin: Convergence analysis of a residual local projection finite element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 50 (2012), 669–699.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Chen, M. Feng, H. Zhou: Local projection stabilized method on unsteady Navier-Stokes equations with high Reynolds number using equal order interpolation. Appl. Math. Comput. 243 (2014), 465–481.

    MathSciNet  MATH  Google Scholar 

  3. A. J. Chorin: Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968), 745–762.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Cibik, S. Kaya: A projection-based stabilized finite element method for steady-state natural convection problem. J. Math. Anal. Appl. 381 (2011), 469–484.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Du, H. Su, X. Feng: Two-level variational multiscale method based on the decoupling approach for the natural convection problem. Int. Commun. Heat. Mass. 61 (2015), 128–139.

    Article  Google Scholar 

  6. Y. He: Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. 41 (2003), 1263–1285.

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. He: Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations with H 2 or H 1 initial data. Numer. Methods Partial Differ. Equations 21 (2005), 875–904.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.G. Heywood, R. Rannacher: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982), 275–311.

    Article  MathSciNet  MATH  Google Scholar 

  9. M.T. Manzari: An explicit finite element algorithm for convection heat transfer problems. Int. J. Numer. Methods Heat Fluid Flow 9 (1999), 860–877.

    Article  MATH  Google Scholar 

  10. J. H. Pyo: A classification of the second order projection methods to solve the Navier-Stokes equations. Korean J. Math. 22 (2014), 645–658.

    Article  Google Scholar 

  11. Y. X. ian, T. Zhang: On error estimates of the projection method for the timedependent natural convection problem: first order scheme. Submitted to Comput. Math. Appl.

  12. Y. X. Qian, T. Zhang: On error estimates of a higher projection method for the timedependent natural convection problem. Submitted to Front. Math. China.

  13. J. Shen: On error estimates of projection methods for Navier-Stokes equations: Firstorder schemes. SIAM J. Numer. Anal. 29 (1992), 57–77.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Shen: On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations. Numer. Math. 62 (1992), 49–73.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Shen: The finite element analysis for the conduction-convection problems. Math. Numer. Sin. 16 (1994), 170–182. (In Chinese.)

    MATH  Google Scholar 

  16. J. Shen: On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes. Math. Comput. 65 (1996), 1039–1065.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Tabata, D. Tagami: Error estimates of finite element methods for nonstationary thermal convection problems with temperature-dependent coefficients. Numer. Math. 100 (2005), 351–372.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Témam: Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33 (1969), 377–385. (In French.)

    Article  MATH  Google Scholar 

  19. R. Témam: Navier-Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, Vol. 2, North-Holland, Amsterdam, 1984.

    Google Scholar 

  20. A.W. Vreman: The projection method for the incompressible Navier-Stokes equations: the pressure near a no-slip wall. J. Comput. Phys. 263 (2014), 353–374.

    Article  MathSciNet  Google Scholar 

  21. Y. Zhang, Y. Hou, J. Zhao: Error analysis of a fully discrete finite element variational multiscale method for the natural convection problem. Comput. Math. Appl. 68 (2014), 543–567.

    Article  MathSciNet  Google Scholar 

  22. T. Zhang, Z. Tao: Decoupled scheme for time-dependent natural convection problem II: time semidiscreteness. Math. Probl. Eng. 2014 (2014), Article ID 726249, 23 pages.

    Google Scholar 

  23. T. Zhang, J. Yuan, Z. Si: Decoupled two-grid finite element method for the timedependent natural convection problem I: Spatial discretization. Numer. Methods Partial Differ. Equations 31 (2015), 2135–2168.

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Zhang, P. Zhang: Meshless modeling of natural convection problems in nonrectangular cavity using the variational multiscale element free Galerkin method. Eng. Anal. Bound. Elem. 61 (2015), 287–300.

    Article  MathSciNet  Google Scholar 

  25. T. Zhang, X. Zhao, P. Huang: Decoupled two level finite element methods for the steady natural convection problem. Numer. Algorithms 68 (2015), 837–866.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Qian.

Additional information

The research has been supported by CAPES and CNPq of Brazil (No. 88881.068004/2014.01), the NSF of China (No. 11301157), and the FDYS of Henan Polytechnic University (J2015-05).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Zhang, T. The second order projection method in time for the time-dependent natural convection problem. Appl Math 61, 299–315 (2016). https://doi.org/10.1007/s10492-016-0133-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-016-0133-y

Keywords

MSC 2010

Navigation