Skip to main content
Log in

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 (1993), 200–257.

    Article  MathSciNet  Google Scholar 

  2. S. Angenent, M. E. Gurtin: Multiphase thermomechanics with an interfacial structure. 2. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108 (1989), 323–391.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Barles, P. E. Souganidis: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), 271–283.

    MathSciNet  MATH  Google Scholar 

  4. M. Beneš, K. Mikula: Simulations of anisotropic motion by mean curvature—comparison of phase field and sharp interface approaches. Acta Math. Univ. Comen. 67 (1998), 17–42.

    MATH  Google Scholar 

  5. S. L. Chan, E. O. Purisima: A new tetrahedral tesselation scheme for isosurface generation. Computers and Graphics 22 (1998), 83–90.

    Article  Google Scholar 

  6. V. Caselles, R. Kimmel, G. Sapiro: Geodesic active contours. International Journal of Computer Vision 22 (1997), 61–79.

    Article  MATH  Google Scholar 

  7. Y.-G. Chen, Y. Giga, S. Goto: Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differ. Geom. 33 (1991), 749–786.

    MathSciNet  MATH  Google Scholar 

  8. S. Corsaro, K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume method in 3D image segmentation. SIAM J. Sci. Comput. 28 (2006), 2248–2265.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. G. Crandall, H. Ishii, P.-L. Lions: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (NS) 27 (1992), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Deckelnick, G. Dziuk: Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs. Interfaces Free Bound. 2 (2000), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Deckelnick, G. Dziuk: Numerical approximations of mean curvature flow of graphs and level sets. In: Mathematical Aspects of Evolving Interfaces (L. Ambrosio, K. Deckelnick, G. Dziuk, M. Mimura, V. A. Solonnikov, H. M. Soner, eds.). Springer, Berlin-Heidelberg-New York, 2003, pp. 53–87.

    Google Scholar 

  12. G. Dziuk: An algorithm for evolutionary surfaces. Numer. Math. 58 (1991), 603–611.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Dziuk: Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4 (1994), 589–606.

    Article  MathSciNet  MATH  Google Scholar 

  14. L. C. Evans, J. Spruck: Motion of level sets by mean curvature I. J. Differ. Geom. 33 (1991), 635–681.

    MathSciNet  MATH  Google Scholar 

  15. A. Handlovičová, K. Mikula, A. Sarti: Numerical solution of parabolic equations related to level set formulation of mean curvature flow. Comput. Vis. Sci. 1 (1998), 179–182.

    Article  MATH  Google Scholar 

  16. A. Handlovičová, K. Mikula, F. Sgallari: Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Handlovičová, K. Mikula, F. Sgallari: Variational numerical methods for solving nonlinear diffusion equations arising in image processing. J. Visual Communication and Image Representation 13 (2002), 217–237.

    Article  Google Scholar 

  18. J. Kačur, K. Mikula: Solution of nonlinear diffusion appearing in image smoothing and edge detection. Appl. Numer. Math. 17 (1995), 47–59.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi: Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134 (1996), 275–301.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Le Veque: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  21. K. Mikula, J. Kačur: Evolution of convex plane curves describing anisotropic motions of phase interfaces. SIAM J. Sci. Comput. 17 (1996), 1302–1327.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Mikula, N. Ramarosy: Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 561–590.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. Mikula, A. Sarti, F. Sgallari: Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput. Vis. Sci. 9 (2006), 23–31.

    Article  MathSciNet  Google Scholar 

  24. K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume level set method in medical image segmentation. In: Handbook of Biomedical Image Analysis: Segmentation and Registration Models (J. Suri et al., eds.). Springer, New York, 2005, pp. 583–626.

    Chapter  Google Scholar 

  25. K. Mikula, D. Ševčovič: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (2001), 1473–1501.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Mikula, D. Ševčovič: Computational and qualitative aspects of evolution of curves driven by curvature and external force. Computing and Visualization in Science 6 (2004), 211–225.

    Article  MathSciNet  Google Scholar 

  27. R. H. Nochetto, M. Paolini, C. Verdi: Sharp error analysis for curvature dependent evolving fronts. Math. Models Methods Appl. Sci. 3 (1993), 711–723.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. M. Oberman: A convergent monotone difference scheme for motion of level sets by mean curvature. Numer. Math. 99 (2004), 365–379.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Osher, R. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York, 2003.

    MATH  Google Scholar 

  30. S. Osher, J. Sethian: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Sarti, R. Malladi, J. A. Sethian: Subjective surfaces: A method for completing missing boundaries. Proc. Natl. Acad. Sci. USA 12 (2000), 6258–6263.

    Article  MathSciNet  Google Scholar 

  32. J. A. Sethian: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York, 1999.

    Google Scholar 

  33. N. J. Walkington: Algorithms for computing motion by mean curvature. SIAM J. Numer. Anal. 33 (1996), 2215–2238.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Handlovičová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handlovičová, A., Mikula, K. Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation. Appl Math 53, 105–129 (2008). https://doi.org/10.1007/s10492-008-0015-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-008-0015-z

Keywords

Navigation