Skip to main content
Log in

Kolmogorov equation and large-time behaviour for fractional brownian motion driven linear sde’s

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We consider a stochastic process X xt which solves an equation

$$dX_t^x = AX_t^x dt + \Phi dB_t^H \quad X_0^x = x$$

where A and Φ are real matrices and BH is a fractional Brownian motion with Hurst parameter H ∈ (1/2,1). The Kolmogorov backward equation for the function u(t,x) = \(H \in \left( {{1 \mathord{\left/ {\vphantom {1 {2,1}}} \right. \kern-\nulldelimiterspace} {2,1}}} \right)\)f(X xt ) is derived and exponential convergence of probability distributions of solutions to the limit measure is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Alós J. A. Leûn D. Nualart (2000) ArticleTitleStochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 Stochastic Processes Appl. 86 121–139

    Google Scholar 

  2. L. Coutin Z. Qian (2000) ArticleTitleStochastic differential equations for fractional Brownian motions C.R. Acad. Sci. Paris 331 75–80

    Google Scholar 

  3. W. Dai C. C. Heyde (1996) ArticleTitleItô’s formula with respect to fractional Brownian motion and its application J. Appl. Math. Stochastic Anal. 9 439–448

    Google Scholar 

  4. L. Decreusefond A. S. Üstünel (1999) ArticleTitleStochastic analysis of the fractional Brownian motion Potential Anal. 10 177–214

    Google Scholar 

  5. R. M. Dudley R. Norvaiša (1999) An Introduction to p-Variation and Young Integrals Concentrated Advanced Course Maphysto, Centre for Mathematical Physics and Stochastics, University of Aarhus Aarhus

    Google Scholar 

  6. T. E. Duncan Y. Hu B. Pasik-Duncan (2000) ArticleTitleStochastic calculus for fractional Brownian motion I: Theory SIAM J. Control Optimization 38 582–612

    Google Scholar 

  7. T. E. Duncan B. Pasik-Duncan B. Maslowski (2002) ArticleTitleFractional Brownian motion and stochastic equations in Hilbert spaces Stoch. Dyn. 2 225–250

    Google Scholar 

  8. W. Grecksch V. V. Anh (1999) ArticleTitleA parabolic stochastic differential equation with fractional Brownian motion input Statist. Probab. Lett. 41 337–346

    Google Scholar 

  9. R. A. Horn C. R. Johnson (1985) Matrix Analysis Cambridge University Press Cambridge

    Google Scholar 

  10. H. E. Hurst (1951) ArticleTitleLong-term storage capacity in reservoirs Trans. Amer. Soc. Civil Eng. 116 400–410

    Google Scholar 

  11. H. E. Hurst: Methods of using long-term storage in reservoirs. Proc. Inst. Civil Engineers, Part I (1956), 519–590.

  12. P. Cheridito, H. Kawaguchi, M. Maejima: Fractional Ornstein-Uhlenbeck processes. http://www.math.washington.edu/ ejpecp/EjpVol8/paper3.abs.html.

  13. A. N. Kolmogoroff (1940) ArticleTitleWienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum C. R. (Dokl.) Acad. Sci. URSS (N.S.) 26 115–118

    Google Scholar 

  14. K. Kubilius (2002) ArticleTitleThe existence and uniqueness of the solution of an integral equation driven by a p-semimartingale of special type Stochastic Process. Appl. 98 289–315

    Google Scholar 

  15. B. Mandelbrot J. Ness ParticleVan (1968) ArticleTitleFractional Brownian motions, fractional noises and applications SIAM Rev. 10 422–437

    Google Scholar 

  16. D. Nualart, B. Maslowski: Evolution equations driven by a fractional Brownian motion. J. Funct. Anal. To appear.

  17. D. Nualart A. Răşcanu (2002) ArticleTitleDifferential equations driven by fractional Brownian motion Collect. Math. 53 55–81

    Google Scholar 

  18. H. L. Royden (1963) Real Analysis Macmillan New York

    Google Scholar 

  19. E. Lutz: Fractional Langevin equation. Phys. Rev. E 64, 051106 (2001).

  20. M. Zähle (1998) ArticleTitleIntegration with respect to fractal functions and stochastic calculus I. Probab. Theory Relat. Fields 111 333–374

    Google Scholar 

  21. M. Zähle (2002) ArticleTitleLong range dependence, no arbitrage and the Black-Scholes formula Stoch. Dyn. 2 265–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been supported by the grant no. 201/01/1197 of the Grant Agency of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vyroai, M. Kolmogorov equation and large-time behaviour for fractional brownian motion driven linear sde’s. Appl Math 50, 63–81 (2005). https://doi.org/10.1007/s10492-005-0004-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10492-005-0004-4

Keywords

Navigation