Skip to main content
Log in

Underwater image enhancement method via multi-feature prior fusion

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The information in a single underwater image is insufficient due to the complexity of the underwater environment, which makes it challenging to meet the expectations of marine research. In this paper, we proposed a visual quality enhancement method for underwater images based on multi-feature prior fusion (MFPF), achieved by extracting and fusing multiple feature priors of underwater images. Complementary multi-features enhance the visual quality of underwater images. We designed a color correction method based on self-adaptive standard deviation, which realizes the color offset correction based on the dominant color of the underwater image. A gamma correction power function and spatial linear adjustment were also applied to achieve a set of artificial exposure map sequences obtained from a single degraded image and enhance the dark area’s brightness and structural details. This design makes full use of the advantages of white balance, guided filtering, and multi-exposure sequence technology. And it uses a multi-scale fusion of various prior features to enhance underwater images. The experimental results show that by applying the multi-feature prior fusion scheme, this design comprehensively solves various degenerated problems, removes over-enhancement, and improves dark details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhou J, Zhang D, Zhang W (2020) Classical and state-of-the-art approaches for underwater image defogging: a comprehensive survey[J]. Front Inf Technol Electron Eng 21(12):1745–1769

    Article  Google Scholar 

  2. Zhou J, Zhang D, Zhang W (2020) Multiscale Fusion Method for the Enhancement of Low-Light Underwater Images[J]. Math Problems Eng 2020

  3. Li C, Guo J, Guo C (2018) Emerging from water: Underwater image color correction based on weakly supervised color transfer[J]. IEEE Signal Process Lett 25(3):323–327

    Article  Google Scholar 

  4. Muniraj M, Dhandapani V (2021) Underwater image enhancement by combining color constancy and dehazing based on depth estimation[J]. Neurocomputing

  5. Fu X, Cao X (2020) Underwater image enhancement with global–local networks and compressed-histogram equalization[J]. Signal Process Image Commun 86:115892

    Article  Google Scholar 

  6. Hou G, Pan Z, Huang B et al (2018) Hue preserving-based approach for underwater colour image enhancement[J]. IET Image Proc 12(2):292–298

    Article  Google Scholar 

  7. Hou G, Li J, Wang G et al (2020) A novel dark channel prior guided variational framework for underwater image restoration[J]. J Vis Commun Image Represent 66:102732

    Article  Google Scholar 

  8. Anwar S, Li C (2020) Diving deeper into underwater image enhancement: A survey[J]. Signal Process Image Commun 89:115978

    Article  Google Scholar 

  9. Ghani ASA, Isa NAM (2015) Underwater image quality enhancement through integrated color model with Rayleigh distribution[J]. Appl Soft Comput 27:219–230

    Article  Google Scholar 

  10. Iqbal K, Odetayo M, James A et al (2010) Enhancing the low quality images using unsupervised colour correction method[C]//2010 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp 1703–1709

  11. Fu X, Zhuang P, Huang Y et al (2014) A retinex-based enhancing approach for single underwater image[C]//2014 IEEE international conference on image processing (ICIP). IEEE, pp 4572–4576

  12. Zhuang P, Li C, Wu J (2021) Bayesian retinex underwater image enhancement[J]. Eng Appl Artif Intell 101:104171

    Article  Google Scholar 

  13. Ancuti CO, Ancuti C, De Vleeschouwer C et al (2017) Color balance and fusion for underwater image enhancement[J]. IEEE Trans Image Process 27(1):379–393

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou J, Zhang D, Zhang W (2021) A multifeature fusion method for the color distortion and low contrast of underwater images[J]. Multimedia Tools Appl 80(12):17515–17541

    Article  Google Scholar 

  15. Jaffe JS (1990) Computer modeling and the design of optimal underwater imaging systems[J]. IEEE J Oceanic Eng 15(2):101–111

    Article  Google Scholar 

  16. Drews P, Nascimento E, Moraes F et al (2013) Transmission estimation in underwater single images, 2013[C]. IEEE International Conference on Computer Vision Workshops, pp 825–830

  17. Galdran A, Pardo D, Picón A et al (2015) Automatic red-channel underwater image restoration[J]. J Vis Commun Image Represent 26:132–145

    Article  Google Scholar 

  18. Huang D, Wang Y, Song W et al (2018) Shallow-water image enhancement using relative global histogram stretching based on adaptive parameter acquisition, 2018[C]. International conference on multimedia modeling. Springer, Cham, pp 453–465

  19. Peng YT, Cao K, Cosman PC (2018) Generalization of the dark channel prior for single image restoration[J]. IEEE Trans Image Process 27(6):2856–2868

    Article  MathSciNet  MATH  Google Scholar 

  20. Song W, Wang Y, Huang D et al (2018) A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration, 2018[C]. Pacific Rim Conference on Multimedia. Springer, Cham, pp 678–688

  21. Zhou J, Liu Z, Zhang W et al (2021) Underwater image restoration based on secondary guided transmission map[J]. Multimedia Tools Appl 80(5):7771–7788

    Article  Google Scholar 

  22. Li C, Guo C, Ren W et al (2019) An underwater image enhancement benchmark dataset and beyond[J]. IEEE Trans Image Process 29:4376–4389

    Article  MATH  Google Scholar 

  23. Guo Y, Li H, Zhuang P (2019) Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE J Oceanic Eng 45(3):862–870

    Article  Google Scholar 

  24. Chen X, Yu J, Kong S et al (2019) Towards real-time advancement of underwater visual quality with GAN[J]. IEEE Trans Industr Electron 66(12):9350–9359

    Article  Google Scholar 

  25. Li C, Anwar S, Porikli F (2020) Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern Recog 98:107038

    Article  Google Scholar 

  26. Li C, Anwar S, Hou J et al (2021) Underwater Image Enhancement via Medium Transmission-Guided Multi-Color Space Embedding[J]. IEEE Trans Image Process 30:4985–5000

    Article  Google Scholar 

  27. Ancuti C O, Ancuti C, Bekaert P (2010) Effective single image dehazing by fusion, 2010[C]. IEEE International Conference on Image Processing, pp 3541–3544

  28. Mertens T, Kautz J, Van Reeth F (2007) Exposure fusion, 2007[C]. 15th Pacific Conference on Computer Graphics and Applications (PG'07), pp 382–390

  29. Ancuti CO, Ancuti C (2013) Single image dehazing by multi-scale fusion[J]. IEEE Trans Image Process 22(8):3271–3282

    Article  Google Scholar 

  30. Ogden JM, Adelson EH, Bergen JR et al (1985) Pyramid-based computer graphics[J]. RCA Eng 30(5):4–15

    Google Scholar 

  31. Moon SW, Lee HS, Eom IK (2020) Improvement of underwater colour correction using standard deviation ratio[J]. Electron Lett 56(20):1051–1054

    Article  Google Scholar 

  32. Li CY, Guo JC, Cong RM et al (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE Trans Image Process 25(12):5664–5677

    Article  MathSciNet  MATH  Google Scholar 

  33. He K, Sun J, Tang X (2012) Guided image filtering[J]. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  Google Scholar 

  34. Zheng M, Qi G, Zhu Z et al (2020) Image dehazing by an artificial image fusion method based on adaptive structure decomposition[J]. IEEE Sens J 20(14):8062–8072

    Article  Google Scholar 

  35. Zhu Z, Wei H, Hu G et al (2020) A novel fast single image dehazing algorithm based on artificial multiexposure image fusion[J]. IEEE Trans Instrum Meas 70:1–23

    Article  Google Scholar 

  36. Galdran A (2018) Image dehazing by artificial multiple-exposure image fusion[J]. Signal Process 149:135–147

    Article  Google Scholar 

  37. Nejati M, Karimi M, Soroushmehr SMR et al (2017) Fast exposure fusion using exposedness function[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, pp 2234–2238

  38. Achanta R, Hemami S, Estrada F et al (2009) Frequency-tuned salient region detection, 2009[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp 1597-1604

  39. Mertens T, Kautz J, Van Reeth F (2007) Exposure fusion, 2007[C]. 15th Pacific Conference on Computer Graphics and Applications (PG'07). IEEE, pp 382–390

  40. Liu R, Fan X, Zhu M et al (2020) Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light[J]. IEEE Trans Circuits Syst Video Technol 30(12):4861–4875

    Article  Google Scholar 

  41. Land EH (1977) The retinex theory of color vision. Sci Am 237(6):108–129

    Article  Google Scholar 

  42. Buchsbaum G (1980) A spatial processor model for object colour perception[J]. J Franklin Inst 310(1):1–26

    Article  Google Scholar 

  43. Finlayson G D, Trezzi E (2004) Shades of gray and colour constancy,2004[C]. Color and Imaging Conference. Society for Imaging Science and Technology, 2004(1), pp 37–41

  44. Van De Weijer J, Gevers T, Gijsenij A (2007) Edge-based color constancy[J]. IEEE Trans Image Process 16(9):2207–2214

    Article  MathSciNet  Google Scholar 

  45. Gijsenij A, Gevers T, Van De Weijer J (2011) Improving color constancy by photometric edge weighting[J]. IEEE Trans Pattern Anal Mach Intell 34(5):918–929

    Article  Google Scholar 

  46. Weng CC, Chen H, Fuh CS (2005) A novel automatic white balance method for digital still cameras, 2005[C]. IEEE International Symposium on Circuits and Systems, pp 3801–3804

  47. Iqbal K, Salam RA, Osman A et al (2007) Underwater image enhancement using an integrated colour model[J]. IAENG Int J Comput Sci 34(2):239–244

    Google Scholar 

  48. Fu X, Fan Z, Ling M et al (2017) Two-step approach for single underwater image enhancement,2017[C]. International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp 789–794

  49. Pan P, Yuan F, Cheng E (2018) Underwater image de-scattering and enhancing using dehazenet and HWD[J]. J Mar Sci Technol 26(4):6

    Google Scholar 

  50. Núñez JA, Cincotta PM, Wachlin FC (1996) Information entropy[M]. Chaos in Gravitational N-Body Systems. Springer, Dordrecht, pp 43–53

    MATH  Google Scholar 

  51. He N, Wang JB, Zhang LL et al (2015) An improved fractional-order differentiation model for image denoising[J]. Signal Process 112:180–188

    Article  Google Scholar 

  52. Panetta K, Gao C, Agaian S (2015) Human-visual-system-inspired underwater image quality measures[J]. IEEE J Oceanic Eng 41(3):541–551

    Article  Google Scholar 

  53. Wang S, Ma K, Yeganeh H et al (2015) A patch-structure representation method for quality assessment of contrast changed images[J]. IEEE Signal Process Lett 22(12):2387–2390

    Article  Google Scholar 

  54. Yang M, Sowmya A (2015) An underwater color image quality evaluation metric[J]. IEEE Trans Image Process 24(12):6062–6071

    Article  MathSciNet  MATH  Google Scholar 

  55. Hautiere N, Tarel JP, Aubert D et al (2008) Blind contrast enhancement assessment by gradient ratioing at visible edges[J]. Image Anal Stereol 27(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang Y, Guo J, Gao H et al (2021) UIEC^2-Net: CNN-based Underwater Image Enhancement Using Two Color Space[J]. 96:116250

Download references

Acknowledgements

Thanks to the data set provided by the joint laboratory of the Dalian University of Technology and Zhangzidao Group. We are also extremely grateful to the anonymous reviewers for their critical comments on the manuscript.

Funding

National Natural Science Foundation of China (No. 61702074); the Liaoning Provincial Natural Science Foundation of China (No. 20170520196); the Fundamental Research Funds for the Central Universities (Nos.3132019205 and 3132019354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingchun Zhou or Weishi Zhang.

Ethics declarations

Disclosures

The authors declare that there are no conflicts of interest related to this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Zhang, D. & Zhang, W. Underwater image enhancement method via multi-feature prior fusion. Appl Intell 52, 16435–16457 (2022). https://doi.org/10.1007/s10489-022-03275-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-022-03275-z

Keywords

Navigation