Skip to main content
Log in

Heterogeneous domain adaptation with statistical distribution alignment and progressive pseudo label selection

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Heterogeneous domain adaptation (HDA) aims to adapt a trained model on a source domain with different input feature space to an unlabeled target domain. In fact, HDA is a challenging issue, since there exists feature and distribution discrepancies across domains. In this paper, we propose a novel approach named as heterogeneous domain adaptation with statistical distribution alignment and progressive pseudo label selection (SDA-PPLS). SDA-PPLS learns two projection matrices for source and target domains to map them into a latent subspace to have a shared feature space. Moreover, to mitigate the distribution gap, SDA-PPLS aligns both first-order and second-order statistical information, simultaneously, to improve the target classification model performance. In addition, to discriminate instances into distinct classes, SDA-PPLS aligns the class conditional distributions by pseudo label refinement of target domain data. Finally, to prevent the propagation of inaccurate pseudo labels to the next iteration, a progressive technique is proposed to select instances with higher probability. Experimental results on several real-word datasets on image to image, text to text and text to image tasks with different feature representations, demonstrate that the proposed method outperforms other state-of-the-art HDA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang J, Li W, Ogunbona P (2017) Joint geometrical and statistical alignment for visual domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1859–1867

  2. Saray S N, Tahmoresnezhad J (2021) Joint distinct subspace learning and unsupervised transfer classification for visual domain adaptation. Signal Image Vid Process 15(2):279–87

    Article  Google Scholar 

  3. Tang B, He H, Baggenstoss P M, Kay S (2016) A Bayesian classification approach using class-specific features for text categorization. IEEE Trans Knowl Data Eng 28(6):1602–1606

    Article  Google Scholar 

  4. Dhar A, Mukherjee H, Dash N S, Roy K (2021) Text categorization: past and present. Artif Intell Rev 54(4):3007–3054

    Article  Google Scholar 

  5. Sharma R, Menghani B, Thanvi A, Kumar M, Jangir S K (2021) An approach toward information retrieval through machine learning and its algorithms: a review. Rising Threats Expert Appl Sol 1187:643–649

    Article  Google Scholar 

  6. Wang J, Feng W, Chen Y, Yu H, Huang M, Yu PS (2018) Visual domain adaptation with manifold embedded distribution alignment. In: Proceedings of the 26th ACM international conference on Multimedia. pp 402–410

  7. Csurka G (2017) A comprehensive survey on domain adaptation for visual applications. In: Domain adaptation in computer vision applications. Springer, pp 1–35

  8. Pereira LA, da Silva Torres R (2018) Semi-supervised transfer subspace for domain adaptation. Pattern Recogn 75:235–249

    Article  Google Scholar 

  9. Ahmadvand M, Tahmoresnezhad J (2021) Metric transfer learning via geometric knowledge embedding. Appl Intell 51(2):921–934

    Article  Google Scholar 

  10. Day O, Khoshgoftaar T M (2017) A survey on heterogeneous transfer learning. J Big Data 4 (1):29

    Article  Google Scholar 

  11. Luo Y, Wen Y, Tao D (2017) Heterogeneous multitask metric learning across multiple domains. IEEE Trans Neural Netw Learn Syst 29(9):4051–4064

    Article  Google Scholar 

  12. Ren C-X, Feng J, Dai D-Q, Yan S (2019) Heterogeneous domain adaptation via covariance structured feature translators. IEEE Transactions on Cybernetics

  13. Li H, Pan SJ, Wan R, Kot AC (2019) Heterogeneous transfer learning via deep matrix completion with adversarial kernel embedding. In: Proceedings of the AAAI conference on artificial intelligence. pp 8602–8609

  14. Huang J, Zhou Z, Shang J, Niu C (2020) Heterogeneous domain adaptation with label and structural consistency. Multimed Tools Appl 79(25/26):17923–17943

    Article  Google Scholar 

  15. Kadhim A I (2019) Survey on supervised machine learning techniques for automatic text classification. Artif Intell Rev 52(1):273–292

    Article  MathSciNet  Google Scholar 

  16. Becker K, Moreira V P, dos Santos A G (2017) Multilingual emotion classification using supervised learning: Comparative experiments. Inf Process Manag 53(3):684–704

    Article  Google Scholar 

  17. Hoffman J, Tzeng E, Darrell T, Saenko K (2017) Simultaneous deep transfer across domains and tasks. In: Domain adaptation in computer vision applications. Springer, pp 173–187

  18. Zhao J, Li L, Deng F, He H, Chen J (2020) Discriminant geometrical and statistical alignment with density peaks for domain adaptation. IEEE Trans Cybern

  19. Li S, Song S, Huang G (2016) Prediction reweighting for domain adaptation. IEEE Trans Neural Netw Learn Syst 28(7):1682–1695

    Article  Google Scholar 

  20. Huang J, Gretton A, Borgwardt K, Schölkopf B, Smola A (2006) Correcting sample selection bias by unlabeled data. Adv Neural Inform Process Syst 19:601–608

    Google Scholar 

  21. Liu H, Shao M, Ding Z, Fu Y (2018) Structure-preserved unsupervised domain adaptation. IEEE Trans Knowl Data Eng 31(4):799–812

    Article  Google Scholar 

  22. Li L, Wan Z, He H (2020) Dual alignment for partial domain adaptation. IEEE Trans Cybern

  23. Gholenji E, Tahmoresnezhad J (2020) Joint discriminative subspace and distribution adaptation for unsupervised domain adaptation. Appl Intell 50(7):2050–2066

    Article  Google Scholar 

  24. Zhang W, Ouyang W, Li W, Xu D (2018) Collaborative and adversarial network for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 3801–3809

  25. Yang B, Ma A J, Yuen P C (2018) Learning domain-shared group-sparse representation for unsupervised domain adaptation. Pattern Recogn 81:615–632

    Article  Google Scholar 

  26. Cao Y, Long M, Wang J (2018) Unsupervised domain adaptation with distribution matching machines. In: AAAI. pp 2795–2802

  27. Ding Z, Nasrabadi N M, Fu Y (2018) Semi-supervised deep domain adaptation via coupled neural networks. IEEE Trans Image Process 27(11):5214–5224

    Article  MathSciNet  Google Scholar 

  28. Rezaei S, Tahmoresnezhad J, Solouk V (2021) A transductive transfer learning approach for image classification. Int J Mach Learn Cybern 12(3):747–762

    Article  Google Scholar 

  29. Gholenji E, Tahmoresnezhad J (2020) Joint local and statistical discriminant learning via feature alignment. Signal Image Vid Process 14(3):609–616

    Article  Google Scholar 

  30. Li S, Liu C H, Su L, Xie B, Ding Z, Chen CP, Wu D (2020) Discriminative transfer feature and label consistency for cross-domain image classification. IEEE Trans Neural Netw Learn Syst

  31. Tahmoresnezhad J, Hashemi S (2017) Visual domain adaptation via transfer feature learning. Knowl Inf Syst 50(2):585–605

    Article  Google Scholar 

  32. Rahman M M, Fookes C, Baktashmotlagh M, Sridharan S (2020) Correlation-aware adversarial domain adaptation and generalization. Pattern Recogn 100:107124

    Article  Google Scholar 

  33. Ghifary M, Balduzzi D, Kleijn W B, Zhang M (2016) Scatter component analysis: A unified framework for domain adaptation and domain generalization. IEEE Trans Pattern Anal Mach Intell 39(7):1414–1430

    Article  Google Scholar 

  34. Lu H, Shen C, Cao Z, Xiao Y, van den Hengel A (2018) An embarrassingly simple approach to visual domain adaptation. IEEE Trans Image Process 27(7):3403–3417

    Article  MathSciNet  MATH  Google Scholar 

  35. Li J, Lu K, Zhu L, Li Z (2017) Locality-constrained transfer coding for heterogeneous domain adaptation. In: Australasian database conference. Springer, pp 193–204

  36. Niu C, Shang J, Huang J, Wang Y, Zhou Z (2018) Structure consistency and class discriminative feature learning for heterogeneous domain adaptation. In: 2018 IEEE 3rd international conference on communication and information systems (ICCIS). IEEE, pp 217–221

  37. Chen C, Fu Z, Chen Z, Jin S, Cheng Z, Jin X, Hua X-S (2020) HoMM: Higher-order moment matching for unsupervised domain adaptation. In: Proceedings of the AAAI conference on artificial intelligence, vol 04, pp 3422–3429

  38. Xu J, Ye P, Li Q, Du H, Liu Y, Doermann D (2016) Blind image quality assessment based on high order statistics aggregation. IEEE Trans Image Process 25(9):4444–4457

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun B, Feng J, Saenko K (2017) Correlation alignment for unsupervised domain adaptation. In: Domain adaptation in computer vision applications. Springer, pp 153–171

  40. Zhang W, Zhang X, Lan L, Luo Z (2020) Maximum mean and covariance discrepancy for unsupervised domain adaptation. Neural Process Lett 51(1):347–366

    Article  Google Scholar 

  41. Xie X, Sun S, Chen H, Qian J (2018) Domain adaptation with twin support vector machines. Neural Process Lett 48(2):1213– 1226

    Article  Google Scholar 

  42. Zhu L, Zhang X, Zhang W, Huang X, Guan N, Luo Z (2017) Unsupervised domain adaptation with joint supervised sparse coding and discriminative regularization term. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 3066–3070

  43. Hoffman J, Rodner E, Donahue J, Darrell T, Saenko K (2013) Efficient learning of domain-invariant image representations. arXiv:13013224

  44. Li W, Duan L, Xu D, Tsang I W (2013) Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans Pattern Anal Mach Intell 36(6):1134–1148

    Article  Google Scholar 

  45. Hoffman J, Rodner E, Donahue J, Kulis B, Saenko K (2014) Asymmetric and category invariant feature transformations for domain adaptation. Int J Comput Vis 109(1-2):28–41

    Article  MathSciNet  MATH  Google Scholar 

  46. Shi X, Liu Q, Fan W, Philip SY, Zhu R (2010) Transfer learning on heterogenous feature spaces via spectral transformation. In: 2010 IEEE international conference on data mining. IEEE, pp 1049–1054 ure

  47. Wang C (2011) Mahadevan S Heterogeneous domain adaptation using manifold alignment. In: IJCAI proceedings-international joint conference on artificial intelligence, vol 1, p 1541

  48. Yao Y, Zhang Y, Li X, Ye Y (2020) Discriminative distribution alignment: A unified framework for heterogeneous domain adaptation. Pattern Recogn 101:107165

    Article  Google Scholar 

  49. Fang W-C, Chiang Y-T (2018) A discriminative feature mapping approach to heterogeneous domain adaptation. Pattern Recogn Lett 106:13–19

    Article  Google Scholar 

  50. Fukunaga K (2013) Introduction to statistical pattern recognition. Elsevier

  51. Yan S, Xu D, Zhang B, Zhang H -J, Yang Q, Lin S (2006) Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  52. Tsai HY-H, Yeh Y-R, Wang FY-C (2016) Learning cross-domain landmarks for heterogeneous domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 5081–5090

  53. Huang K, Wen H, Zhou C, Yang C, Gui W (2020) Transfer dictionary learning method for cross-domain multimode process monitoring and fault isolation. IEEE Trans Instrum Meas 69(11):8713–8724

    Article  Google Scholar 

  54. Huang K, Wu Y, Wang C, Xie Y, Yang C, Gui W (2020) A projective and discriminative dictionary learning for high-dimensional process monitoring with industrial applications. IEEE Trans Industr Inf 17(1):558–568

    Article  Google Scholar 

  55. Li J, Lu K, Huang Z, Zhu L, Shen H T (2018) Transfer independently together: A generalized framework for domain adaptation. IEEE Trans Cybern 49(6):2144–2155

    Article  Google Scholar 

  56. Shen C, Guo Y (2018) Unsupervised heterogeneous domain adaptation with sparse feature transformation. In: Asian conference on machine learning. pp 375–390

  57. Li J, Lu K, Huang Z, Zhu L, Shen H T (2018) Heterogeneous domain adaptation through progressive alignment. IEEE Trans Neural Netw Learn Syst 30(5):1381–1391

    Article  MathSciNet  Google Scholar 

  58. Zou Y, Yu Z, Kumar B, Wang J (2018) Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European conference on computer vision (ECCV). pp 289–305

  59. Wang Q, Breckon T (2020) Unsupervised domain adaptation via structured prediction based selective pseudo-labeling. In: Proceedings of the AAAI conference on artificial intelligence, vol 04, pp 6243–6250

  60. Liang J, He R, Sun Z, Tan T (2019) Exploring uncertainty in pseudo-label guided unsupervised domain adaptation. Pattern Recogn 96:106996

    Article  Google Scholar 

  61. Wang Q, Bu P, Breckon TP (2019) Unifying unsupervised domain adaptation and zero-shot visual recognition. In: 2019 International joint conference on neural networks (IJCNN). IEEE, pp 1–8

  62. Chen C, Xie W, Huang W, Rong Y, Ding X, Huang Y, Xu T, Huang J (2019) Progressive feature alignment for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 627–636

  63. Yao Y, Zhang Y, Li X, Ye Y (2019) Heterogeneous domain adaptation via soft transfer network. In: Proceedings of the 27th ACM international conference on multimedia. pp 1578– 1586

  64. Gretton A, Borgwardt K M, Rasch M J, Schölkopf B, Smola A (2012) A kernel two-sample test. J Mach Learn Res 13(1):723–773

    MathSciNet  MATH  Google Scholar 

  65. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Jo Mach Learning Res 7(Nov):2399–2434

    MathSciNet  MATH  Google Scholar 

  66. Lee H, Battle A, Raina R, Ng A (2006) Efficient sparse coding algorithms. Adv Neural Inf Process Syst 19:801–808

    Google Scholar 

  67. Li J, Zhao J, Lu K (2016) Joint feature selection and structure preservation for domain adaptation. In: IjCAI. pp 1697–1703

  68. Berlind C, Urner R (2015) Active nearest neighbors in changing environments. In: International conference on machine learning. pp 1870–1879

  69. Gentleman R, Carey VJ (2008) Unsupervised machine learning. In: Bioconductor case studies. Springer, pp 137–157

  70. Saenko K, Kulis B, Fritz M, Darrell T (2010) Adapting visual category models to new domains. In: European conference on computer vision. Springer, pp 213–226

  71. Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset

  72. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  73. Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) Decaf: A deep convolutional activation feature for generic visual recognition. In: International conference on machine learning. pp 647–655

  74. Amini MR, Usunier N, Goutte C (2009) Learning from multiple partially observed views-an application to multilingual text categorization. In: Advances in neural information processing systems. pp 28–36

  75. Tommasi T, Tuytelaars T (2014) A testbed for cross-dataset analysis. In: European conference on computer vision. Springer, pp 18–31

  76. Chua T-S, Tang J, Hong R, Li H, Luo Z, Zheng Y (2009) NUS-WIDE: a real-world web image database from national university of singapore. In: Proceedings of the ACM international conference on image and video retrieval. pp 1–9

  77. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. Ieee, pp 248–255

  78. Chen W-Y, Hsu T-MH, Tsai Y-HH, Wang Y-CF, Chen M-S (2016) Transfer neural trees for heterogeneous domain adaptation. In: European conference on computer vision. Springer, pp 399–414

  79. Li W, Duan L, Xu D, Tsang I W (2013) Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation. IEEE Trans Pattern Anal Mach Intell 36(6):1134–1148

    Article  Google Scholar 

  80. Li J, Jing M, Lu K, Zhu L, Shen H T (2019) Locality preserving joint transfer for domain adaptation. IEEE Trans Image Process 28(12):6103–6115

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Tahmoresnezhad.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour, N., Tahmoresnezhad, J. Heterogeneous domain adaptation with statistical distribution alignment and progressive pseudo label selection. Appl Intell 52, 8038–8055 (2022). https://doi.org/10.1007/s10489-021-02756-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-021-02756-x

Keywords

Navigation