Skip to main content
Log in

On the combination of logical and probabilistic models for information analysis

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Formal logical tools are able to provide some amount of reasoning support for information analysis, but are unable to represent uncertainty. Bayesian network tools represent probabilistic and causal information, but in the worst case scale as poorly as some formal logical systems and require specialized expertise to use effectively. We describe a framework for systems that incorporate the advantages of both Bayesian and logical systems. We define a formalism for the conversion of automatically generated natural deduction proof trees into Bayesian networks. We then demonstrate that the merging of such networks with domain-specific causal models forms a consistent Bayesian network with correct values for the formulas derived in the proof. In particular, we show that hard evidential updates in which the premises of a proof are found to be true force the conclusions of the proof to be true with probability one, regardless of any dependencies and prior probability values assumed for the causal model. We provide several examples that demonstrate the generality of the natural deduction system by using inference schemes not supportable directly in Horn clause logic. We compare our approach to other ones, including some that use non-standard logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe J, Akama S (2001) On some aspects of decidability of annotated systems. In: Proceedings of the international conference on artificial intelligence, pp 789–795

    Google Scholar 

  2. Akama S, Abe J (1998) Many-valued and annotated modal logics. In: Proceedings of the 28th international symposium on multiple-valued logic. IEEE Computer Society, Washington, pp 114–119

    Google Scholar 

  3. Bacchus F (1990) Representing and reasoning with probabilistic knowledge: a logical approach to probabilities. MIT Press, Cambridge

    Google Scholar 

  4. Benferhat S, Dubois D, Prade H (2001) Towards a possibilistic logic handling of preferences. Appl Intell 14:303–317

    Article  MATH  Google Scholar 

  5. Bertelè U, Brioschi F (1972) Nonserial dynamic programming. Academic Press, New York

    MATH  Google Scholar 

  6. Biba M, Ferilli S, Esposito F (2008) Discriminative structure learning of Markov logic networks. In: Proceedings of the 18th international conference on inductive logic programming, ILP ’08. Springer, Berlin, pp 59–76

    Google Scholar 

  7. Bundy A (1985) Incidence calculus: a mechanism for probabilistic reasoning. J Autom Reason 1(3):263–283

    Article  MathSciNet  MATH  Google Scholar 

  8. Byrnes J (1999) Proof search and normal forms in natural deduction. PhD thesis, Department of Philosophy, Carnegie Mellon University

  9. Carbogim DV, da Silva FSC (1998) Annotated logic applications for imperfect information. Appl Intell 9:163–172

    Article  Google Scholar 

  10. Chachoua M, Pacholczyk D (2000) A symbolic approach to uncertainty management. Appl Intell 13:265–283

    Article  Google Scholar 

  11. Cheng J, Emami R, Kerschberg L, Santos JE, Zhao Q, Nguyen H, Wang H, Huhns M, Valtorta M, Dang J, Goradia H, Huang J, Xi S (2005) Omniseer: a cognitive framework for user modeling, reuse of prior and tacit knowledge, and collaborative knowledge services. In: Proceedings of the 38th Hawaii international conference on system sciences (HICSS38), Big Island, HI

    Google Scholar 

  12. Cooper GF (1987) Probabilistic inference using belief networks is np-hard, memo KSL-87-27 (revised July 1988). Tech rep, Medical Computer Science Group, Knowledge Systems Laboratory, Stanford University

  13. Cooper GF (1990) The computational complexity of probabilistic inference using Bayesian belief networks. Artif Intell 42:393–405

    Article  MATH  Google Scholar 

  14. Darwiche A (2009) Modeling and reasoning with Bayesian networks. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  15. Dekhtyar A, Subrahmanian VS (2000) Hybrid probabilistic programs. J Log Program 43(3):187–250

    Article  MathSciNet  MATH  Google Scholar 

  16. Dietterich TG, Domingos P, Getoor L, Muggleton S, Tadepalli P (2008) Structured machine learning: the next ten years. Mach Learn 73:3–23

    Article  Google Scholar 

  17. Dubois D, Prade H (1987) Necessity measures and the resolution principle. IEEE Trans Syst Man Cybern 17:474–478

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubois D, Prade H (1988) Possibility theory. Plenum Press, New York

    MATH  Google Scholar 

  19. Dubois D, Prade H (1990) An introduction to possibilistic and fuzzy logics. In: Readings in uncertain reasoning. Morgan Kaufmann Publishers, San Francisco, pp 742–761

    Google Scholar 

  20. Dubois D, Prade H (1994) Can we enforce full compositionality in uncertainty calculi? In: Proc of the 11th nat conf on artificial intelligence (AAAI-94). AAAI Press/MIT Press, Menlo Park/Cambridge, pp 149–154

    Google Scholar 

  21. Dubois D, Prade H (2001) Possibility theory, probability theory and multiple-valued logics: a clarification. Ann Math Artif Intell 32(1–4):35–66

    Article  MathSciNet  Google Scholar 

  22. Dubois D, Lang J, Prade H (1987) Theorem proving under uncertainty: a possibility theory-based approach. In: IJCAI’87: proceedings of the 10th international joint conference on artificial intelligence. Morgan Kaufmann Publishers Inc, San Francisco, pp 984–986

    Google Scholar 

  23. Dubois D, Lang J, Prade H (1990) Poslog, an inference system based on possibilistic logic. In: Proc of the North American fuzzy information processing society conference (NAFIPS’90): quarter century of fuzzyness, Toronto, Canada, 06/06/90–08/06/90, pp 177–180

    Google Scholar 

  24. Dubois D, Lang J, Prade H (1994) Automated reasoning using possibilistic logic: semantics, belief revision and variable certainty weights. IEEE Trans Knowl Data Eng 6(1):64–71

    Article  Google Scholar 

  25. Dubois D, Lang J, Prade H (1994) Possibilistic logic. In: Gabbay DM, Hogger CJ, JA Robinson (eds) Handbook of logic in artificial intelligence and logic programming. Nonmonotonic reasoning and uncertain reasoning, vol 3. Oxford University Press, New York, pp 439–513

    Google Scholar 

  26. Fagin R, Halpern JY, Megiddo N (1990) A logic for reasoning about probabilities. Inf Comput 87:78–128

    Article  MathSciNet  MATH  Google Scholar 

  27. Fierens D, Blockeel H, Bruynooghe M, Ramon J (2005) Logical Bayesian networks and their relation to other probabilistic logical models. In: Proceedings of the 15th international conference on inductive logic programming. Springer, Berlin, pp 121–135

    Google Scholar 

  28. Fierens D, Ramon J, Bruynooghe M, Blockeel H (2008) Learning directed probabilistic logical models: ordering-search versus structure-search. Ann Math Artif Intell 54:99–133

    Article  MathSciNet  MATH  Google Scholar 

  29. Friedman N, Getoor L, Koller D, Pfeffer A (1999) Learning probabilistic relational models. In: IJCAI. Springer, Berlin, pp 1300–1309

    Google Scholar 

  30. Getoor L, Taskar B (2007) Introduction to statistical relational learning (adaptive computation and machine learning). MIT Press, Cambridge

    Google Scholar 

  31. Getoor L, Friedman N, Koller D, Taskar B (2001) Learning probabilistic models of relational structure. In: Proceedings of the eighteenth international conference on machine learning. Morgan Kaufmann, San Mateo, pp 170–177

    Google Scholar 

  32. Getoor L, Friedman N, Koller D, Taskar B (2002) Learning probabilistic models of link structure. J Mach Learn Res 3:679–707

    MathSciNet  Google Scholar 

  33. Haarslev Pai HI V, Shiri N (2009) A formal framework for description logics with uncertainty. Int J Approx Reason 50(9):1399–1415

    Article  MathSciNet  MATH  Google Scholar 

  34. Halpern JY (1990) An analysis of first-order logics of probability. Artif Intell 46:311–350

    Article  MATH  Google Scholar 

  35. Halpern JY (2003) Reasoning about uncertainty. MIT Press, Cambridge

    MATH  Google Scholar 

  36. Delugach H (ed) (2005) Common logic—a framework for a family of logic-based languages. Tech rep, International Standards Organization: iSO/IEC JTC 1/SC 32N1377, International Standards Organization Final Committee Draft, 2005-12-13, available at http://i-cl.tamu.edu/docs/cl/32N1377T-FCD24707.pdf

  37. Hayes PJ (2006) IKL guide. Tech rep, Florida Institute for Human and Machine Cognition, unpublished memorandum available at http://www.ihmc.us/users/phayes/IKL/GUIDE/GUIDE.html

  38. Hayes PJ, Menzel C (2006) IKL specification document. Tech rep, Florida Institute for Human and Machine Cognition, unpublished memorandum available at http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html

  39. Hollunder B (1995) An alternative proof method for possibilistic logic and its application to terminological logics. Int J Approx Reason 12(2):85–109

    Article  MathSciNet  MATH  Google Scholar 

  40. Huhns M, Valtorta M, Wang J (2010) Design principles for ontological support of Bayesian evidence management. In: Obrst L, Janssen T, Ceusters W (eds) Semantic technologies, ontologies, and information sharing for intelligence analysis. IOS Press, Amsterdam, pp 163–178

    Google Scholar 

  41. Huynh TN, Mooney RJ (2008) Discriminative structure and parameter learning for Markov logic networks. In: Proceedings of the 25th international conference on machine learning, ICML ’08. ACM, New York, pp 416–423

    Chapter  Google Scholar 

  42. Huynh TN, Mooney RJ (2009) Max-margin weight learning for Markov logic networks. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML/PKDD-09). Bled, pp 248–263

    Google Scholar 

  43. Jaeger M (1997) Relational Bayesian networks. In: Proceedings of the 13th conference of uncertainty in artificial intelligence (UAI-13). Morgan Kaufmann, San Mateo, pp 266–273

    Google Scholar 

  44. Jaeger M (2002) Relational Bayesian networks: a survey. Electron Trans Artif Intell 6

  45. Jaeger M (2007) Parameter learning for relational Bayesian networks. In: Proceedings of the international conference in machine learning

    Google Scholar 

  46. Jensen FV, Nielsen TD (2007) Bayesian networks and decision graphs, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  47. Johnson DS (1990) A catalog of complexity classes. In: van Leeuwen J (ed) Handbook of theoretical computer science, vol. A: algorithms and complexity. MIT Press, Cambridge, pp 67–161

    Google Scholar 

  48. Kersting K, De Raedt L (2008) Basic principles of learning Bayesian logic programs. In: De Raedt L, Frasconi P, Kersting K, Muggleton S (eds) Probabilistic inductive logic programming. Springer, Berlin, pp 189–221

    Chapter  Google Scholar 

  49. Kersting K, Raedt LD (2001) Bayesian logic programs. CoRR cs.AI/0111058

  50. Kifer M, Subrahmanian VS (1989) On the expressive power of annotated logic programs. In: Proceedings of the North American conference on logic programming, pp 1069–1089

    Google Scholar 

  51. Kifer M, Subrahmanian VS (1992) Theory of generalized annotated logic programming and its applications. J Log Program 12:335–367

    Article  MathSciNet  Google Scholar 

  52. Kim YG, Valtorta M, Vomlel J (2004) A prototypical system for soft evidential update. Appl Intell 21(1):81–97

    Article  MATH  Google Scholar 

  53. Kok S, Domingos P (2009) Learning Markov logic network structure via hypergraph lifting. In: Proceedings of the 26th international conference on machine learning (ICML-09)

    Google Scholar 

  54. Koller D (1998) Pfeffer a probabilistic frame-based systems. In: Proc AAAI. AAAI Press, Menlo Park, pp 580–587

    Google Scholar 

  55. Laskey KB (2006) First-order Bayesian logic. Technical report C4I06-01. Tech rep, SEOR Department, George Mason University

  56. Laskey KB (2008) MEBN: a language for first-order knowledge bases. Artif Intell 172:140–178

    Article  MathSciNet  MATH  Google Scholar 

  57. Laskey KB, Mahoney SM (1997) Network fragments: representing knowledge for constructing probabilistic models. In: Proceedings of the thirteenth annual conference on uncertainty in artificial intelligence (UAI-97), Providence, pp 334–341

    Google Scholar 

  58. Liu W, Bundy A (1994) A comprehensive comparison between generalized incidence calculus and the Dempster-Shafer theory of evidence. Int J Hum-Comput Stud 40:1009–1032

    Article  Google Scholar 

  59. Liu W, McBryan D, Bundy A (1998) The method of assigning incidences. Appl Intell 9:139–161

    Article  Google Scholar 

  60. Loveland DW, Stickel M (1976) A hole in goal trees: Some guidance from resolution theory. IEEE Trans Comput 25:335–341

    Article  MATH  Google Scholar 

  61. Lowd D, Domingos P (2007) Efficient weight learning for Markov logic networks. In: Proceedings of the eleventh European conference on principles and practice of knowledge discovery in databases, pp 200–211

    Google Scholar 

  62. Loyer Y, Straccia U (2009) Approximate well-founded semantics, query answering and generalized normal logic programs over lattices. Ann Math Artif Intell 55:389–417

    Article  MathSciNet  MATH  Google Scholar 

  63. Lu JJ, Murray NV, Rosenthal E (1993) Signed formulas and annotated logics. In: Proceedings of int symposium on multiple-valued logic, pp 48–53

    Google Scholar 

  64. Lukasiewicz T (2007) Probabilistic description logic programs. Int J Approx Reason 45(2):288–307

    Article  MathSciNet  MATH  Google Scholar 

  65. Lukasiewicz T (2008) Probabilistic description logic programs under inheritance with overriding for the semantic web. Int J Approx Reason 49(1):18–34

    Article  MathSciNet  MATH  Google Scholar 

  66. Milch B, Russell S (2007) First-order probabilistic languages: Into the unknown. In: Proceedings of the 16th international conference on inductive logic programming, pp 10–24

    Google Scholar 

  67. Muggleton S (1996) Stochastic logic programs. In: Advances in inductive logic programming. IOS Press, Amsterdam, pp 254–264

    Google Scholar 

  68. Muggleton S (2000) Learning stochastic logic programs. In: Getoor L, Jensen D (eds) Proceedings of the AAAI2000 workshop on learning statistical models from relational data, URL: http://www.doc.ic.ac.uk/~shm/Papers/slplearn.pdf

    Google Scholar 

  69. Neapolitan RE (1990) Probabilistic reasoning in expert systems: theory and algorithms. Wiley, New York

    Google Scholar 

  70. Ng R, Subrahmanian VS (1992) Probabilistic logic programming. Inf Comput 101:150–201

    Article  MathSciNet  MATH  Google Scholar 

  71. Ngo L, Haddawy P (1996) Answering queries from context-sensitive probabilistic knowledge bases. Theor Comput Sci 171:147–177

    Article  MathSciNet  Google Scholar 

  72. Niles I, Pease A (2001) Towards a standard upper ontology. In: Welty C, Smith B (eds) Proceedings of the 2nd international conference on formal ontology in information systems (FOIS-2001), Ogunquit, ME, USA, pp 2–9

    Chapter  Google Scholar 

  73. Nilsson NJ (1986) Probabilistic logic. Artif Intell 28(1):71–87

    Article  MathSciNet  MATH  Google Scholar 

  74. Obeid N (2005) A formalism for representing and reasoning with temporal information, event and change. Appl Intell 23:109–119

    Article  Google Scholar 

  75. Orponen P (1990) Dempster’s rule of combination is #p-complete. Artif Intell 44:245–253

    Article  MathSciNet  MATH  Google Scholar 

  76. Paris J (1994) The uncertain reasoner’s companion: a mathematical perspective. Cambridge tracts in theoretical computer science, vol 39. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  77. Park J (2002) Map complexity results and approximation methods. In: Proceedings of the 18th annual conference on uncertainty in artificial intelligence (UAI-02). Morgan Kaufmann, San Francisco, pp 388–439

    Google Scholar 

  78. Pearl J (2000) Causality: modeling, reasoning, and inference. Cambridge University Press, Cambridge

    Google Scholar 

  79. Peng Y, Reggia JA (1990) Abductive inference models for diagnostic problem solving. Springer, New York

    Book  MATH  Google Scholar 

  80. Poole D (2008) The independent choice logic and beyond. In: Probabilistic inductive logic programming: theory and applications. Springer, Berlin, pp 222–243

    Chapter  Google Scholar 

  81. Qi G, Pan JZ, Ji Q (2007) A possibilistic extension of description logics. In: Proceedings of the international workshop on description logics (DL’07), pp 435–442

    Google Scholar 

  82. Riazanov A, Voronkov A (2002) The design and implementation of Vampire. AI Commun. 15:91–110

    MATH  Google Scholar 

  83. Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1–2):107–136

    Article  Google Scholar 

  84. Rose DJ (1972) A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In: Read R (ed) Graph theory and computing. Academic Press, New York, pp 183–217

    Google Scholar 

  85. Roth D (1996) On the hardness of approximate reasoning. Artif Intell 82:273–302

    Article  Google Scholar 

  86. de Salvo Braz R, Amir E, Roth D (2008) A survey of first-order probabilistic models. In: Holmes D, Jain L (eds) Innovations in Bayesian networks. Springer, Berlin, pp 289–317. URL: http://l2r.cs.uiuc.edu/danr/Papers/BrazAmRo08.pdf

    Google Scholar 

  87. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    MATH  Google Scholar 

  88. Singla P, Domingos P (2005) Discriminative training of Markov logic networks. In: Proc of the natl conf on artificial intelligence

    Google Scholar 

  89. Smets P, Mamdani E, Dubois D, Prade H (eds) (1988) Non-standard logics for automated reasoning. Academic Press, San Diego

    MATH  Google Scholar 

  90. Stoilos G, Stamou G, Pan JZ, Tzouvaras V, Horrocks I (2007) Reasoning with very expressive fuzzy description logics. J Artif Intell Res 273–320

  91. Straccia U (2001) Reasoning within fuzzy description logics. J Artif Intell Res 14:137–166

    MathSciNet  MATH  Google Scholar 

  92. Straccia U (2006) A fuzzy description logic for the semantic web. In: Sanchez E (ed) Fuzzy logic and the semantic web, capturing intelligence. Elsevier, Amsterdam, pp 73–90. Chap 4

    Chapter  Google Scholar 

  93. Straccia U (2008) Managing uncertainty and vagueness in description logics, logic programs and description logic programs. In: Baroglio C, Bonatti PA, Maluszyński J, Marchiori M, Polleres A, Schaffert S (eds) Reasoning web. Springer, Berlin, pp 54–103

    Chapter  Google Scholar 

  94. Straccia U, Bobillo F (2007) Mixed integer programming, general concept inclusions and fuzzy description logics. In: Proceedings of the 5th conference of the European society for fuzzy logic and technology (EUSFLAT-07), vol 2, University of Ostrava, Ostrava, Czech Republic, pp 213–220

    Google Scholar 

  95. Subrahmanian V (2007) Uncertainty in logic programming: some recollections. Assoc Log Program Newslett 20(2)

  96. Subrahmanian VS (1987) On the semantics of quantitative logic programs. In: Proceedings of the 4th IEEE symposium on logic programming, pp 173–182

  97. Valtorta M, Kim YG, Vomlel J (2002) Soft evidential update for probabilistic multiagent systems. Int J Approx Reason 29(1):71–106

    Article  MathSciNet  MATH  Google Scholar 

  98. Valtorta M, Dang J, Goradia H, Huang J, Huhns M (2005) Extending Heuer’s analysis of competing hypotheses method to support complex decision analysis. In: Proceedings of the 2005 international conference on intelligence analysis (IA-05) (CD-ROM), extended version available at http://www.cse.sc.edu/~mgv/reports/IA-05.pdf

    Google Scholar 

  99. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Valtorta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Byrnes, J., Valtorta, M. et al. On the combination of logical and probabilistic models for information analysis. Appl Intell 36, 472–497 (2012). https://doi.org/10.1007/s10489-010-0272-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-010-0272-x

Keywords

Navigation