Skip to main content
Log in

Third-order elastic, piezoelectric, and dielectric constants

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The definitions of the third-order elastic, piezoelectric, and dielectric constants and the properties of the associated tensors are discussed. Based on the energy conservation and coordinate transformation, the relations among the third-order constants are obtained. Furthermore, the relations among the third-order elastic, piezoelectric, and dielectric constants of the seven crystal systems and isotropic materials are listed in detail. These third-order constants relations play an important role in solving nonlinear problems of elastic and piezoelectric materials. It is further found that all third-order piezoelectric constants are 0 for 15 kinds of point groups, while all third-order dielectric constants are 0 for 16 kinds of point groups as well as isotropic material. The reason is that some of the point groups are centrally symmetric, and the other point groups are high symmetry. These results provide the foundation to measure these constants, to choose material, and to research nonlinear problems. Moreover, these results are helpful not only for the study of nonlinear elastic and piezoelectric problems, but also for the research on flexoelectric effects and size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KOGAN, S. M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Physics—Solid State, 5(10), 2069–2070 (1964)

    Google Scholar 

  2. ZHANG, Y. M., CHEN, H., DAI, L. X., HU, H. P., FAN, G. F., and LV, W. Z. Analysis on performance of flextensional piezoelectric hydrophone. 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, Sichuan, 235–239 (2017)

    Chapter  Google Scholar 

  3. WANG, H. R., XIE, J. M., XIE, X., HU, Y. T., and WANG, J. Nonlinear characteristics of circular-cylinder piezoelectric power harvester near resonance based on flow-induced flexural vibration mode. Applied Mathematics and Mechanics (English Edition), 35(2), 229–236 (2014) https://doi.org/10.1007/s10483-014-1756-6

    Article  MathSciNet  Google Scholar 

  4. YANG, Z. T., YANG, J. S., and HU, Y. T. Optimal electrode shape and size of doubly rotated quartz plate thickness mode piezoelectric resonators. Applied Physics Letters, 92(10), 103516 (2008)

    Article  Google Scholar 

  5. HASHIMOTO, K. Y. Surface Acoustic Wave Devices in Telecommunications, Springer, Berlin (2000)

    Book  Google Scholar 

  6. XIE, J. M. and HU, Y. T. Electric admittance analysis of quartz crystal resonator in thickness-shear mode induced by array of surface viscoelastic micro-beams. Applied Mathematics and Mechanics (English Edition), 38(1), 29–38 (2017) https://doi.org/10.1007/s10483-017-2154-6

    Article  MathSciNet  Google Scholar 

  7. NAKAGAWA, R., KYOYA, H., SHIMIZU, H., KIHARA, T., and HASHIMOTO, K. Y. Study on generation mechanisms of second-order nonlinear signals in surface acoustic wave devices and their suppression. Japanese Journal of Applied Physics, 54(7S1), 07HD12 (2015)

    Article  Google Scholar 

  8. NAKAGAWA, R., SUZUKI, T., SHIMIZU, H., KYOYA, H., and HASHIMOTO, K. Y. Study on generation mechanisms of third-order nonlinearity in SAW devices. Ultrasonics Symposium, IEEE (2015)

    Google Scholar 

  9. YONG, Y. K. and PANG, X. Nonlinear frequency response of second harmonic generation in SAW IDT resonators. 2017 IEEE International Ultrasonics Symposium, IEEE, 1–4 (2017)

    Google Scholar 

  10. YONG, Y., PATEL, M., and TANAKA, M. Effects of thermal stresses on the frequency-temperature behavior of piezoelectric resonators. Journal of Thermal Stresses, 30(6), 639–661 (2007)

    Article  Google Scholar 

  11. THURSTON, R., MCSKIMIN, H., and ANDREATCH, J. P. Third-order elastic coefficients of quartz. Journal of Applied Physics, 37(1), 267–275 (1966)

    Article  Google Scholar 

  12. THURSTON, R. and BRUGGER, K. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Physical Review, 133(6A), A1604 (1964)

    Article  Google Scholar 

  13. BOGARDUS, E. Third-order elastic constants of Ge, MgO, and fused SiO2. Journal of Applied Physics, 36(8), 2504–2513 (1965)

    Article  Google Scholar 

  14. CHO, Y. and YAMANOUCHI, K. Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate. Journal of Applied Physics, 61(3), 875–887 (1987) ¨

    Article  Google Scholar 

  15. MAYER, A., MAYER, E., MAYER, M., JÄGER, P., RUILE, W., BLEYL, I., and WAGNER, K. Effective nonlinear constants for SAW devices from FEM calculations. IEEE International Ultrasonics Symposium, IEEE, 1–4 (2015)

    Google Scholar 

  16. LIU, H., SHIN, K. C., LEE, J. J., and CAI, Z. M. Nonlinear acoustoelastic interactions of lamb waves with LiNbO3 films deposited on sapphire substrates. Key Engineering Materials, 261, 263–268 (2004)

    Article  Google Scholar 

  17. ARTIOLI, G., MONACO, H. L., VITERBO, D., FERRARIS, G., GILLI, G., ZANOTTI, G., and CATTI, M. Fundamentals of Crystallography, Oxford University Press, Oxford (2002)

    Google Scholar 

  18. HEARMON, R. “Third-order” elastic coefficients. Acta Crystallographica, 6(4), 331–340 (1953)

    Article  MathSciNet  Google Scholar 

  19. MEITZLER, A., TIERSTEN, H., WARNER, A., BERLINCOURT, D., COQUIN, G., and WELSH, I. IEEE Standard on Piezoelectricity, American National Standards Institute, New York (1988)

    Google Scholar 

  20. TAGANTSEV, A. Piezoelectricity and flexoelectricity in crystalline dielectrics. Physical Review B, 34(8), 5883 (1986)

    Article  Google Scholar 

  21. RAY, M. Exact solutions for flexoelectric response in nanostructures. Journal of Applied Mechanics, 81(9), 091002 (2014)

    Article  Google Scholar 

  22. MURA, T. Micromechanics of Defects in Solids, Springer Science & Business Media, Dordrecht (1987)

    Book  Google Scholar 

  23. HU, Y. T., WANG, J. N., YANG, F., XUE, H., HU, H. P., and WANG, J. The effects of first-order strain gradient in micro piezoelectric-bimorph power harvesters. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 58(4), 849–852 (2011)

    Article  Google Scholar 

  24. WANG, J. N., WANG, H. R., HU, H. P., LUO, B., and HU, Y. T. On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters. Smart Materials & Structures, 21, 015006 (2012)

    Article  Google Scholar 

  25. WANG, Y. and HERRON, N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. The Journal of Physical Chemistry, 95(2), 525–532 (1991)

    Article  Google Scholar 

  26. AULD, B. A. Acoustic Fields and Waves in Solids, Wiley, New York (1973)

    Google Scholar 

  27. NEWNHAM, R. E. Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press on Demand, Oxford (2005)

    Google Scholar 

  28. LUAN, G. D., ZHANG, J. D., and WANG, R. Q. Piezoelectric Transducers and Array (in Chinese), Beijing University Press, Beijing (2005)

    Google Scholar 

  29. YANG, J. An Introduction to the Theory of Piezoelectricity, Springer, New York (2005)

    MATH  Google Scholar 

  30. TAGANTSEV, A. Theory of flexoelectric effect in crystals. Zhurnal Eksperimental’noi i Teoretich-eskoi Fiziki, 88(6), 2108–2122 (1985)

    Google Scholar 

  31. HU, S. L. and SHEN, S. P. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Science China Physics, Mechanics and Astronomy, 53(8), 1497–1504 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongping Hu.

Additional information

* Citation: ZHANG, Y. M., JIN, J., and HU, H. P. Third-order elastic, piezoelectric, and dielectric constants. Applied Mathematics and Mechanics (English Edition), 40(12), 1831–1846 (2019) https://doi.org/10.1007/s10483-019-2550-7

Project supported by the National Natural Science Foundation of China (Nos. 11872186 and 11272126) and the Fundamental Research Funds for the Central Universities (No.HUST: 2016JCTD114)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jin, J. & Hu, H. Third-order elastic, piezoelectric, and dielectric constants. Appl. Math. Mech.-Engl. Ed. 40, 1831–1846 (2019). https://doi.org/10.1007/s10483-019-2550-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-019-2550-7

Keywords

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation