Skip to main content
Log in

Application of differential constraint method to exact solution of second-grade fluid

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A differential constraint method is used to obtain analytical solutions of a second-grade fluid flow. By using the first-order differential constraint condition, exact solutions of Poiseuille flows, jet flows and Couette flows subjected to suction or blowing forces, and planar elongational flows are derived. In addition, two new classes of exact solutions for a second-grade fluid flow are found. The obtained exact solutions show that the non-Newtonian second-grade flow behavior depends not only on the material viscosity but also on the material elasticity. Finally, some boundary value problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yanenko, N. N. Selected Works (in Russian), Nauka, Moscow (1991)

    Google Scholar 

  2. Sidorov, A. F., Shapeev, V. P., and Yanenko, N. N. Method of Differential Constraints and its Applications in Gas Dynamics (in Russian), Nauka, Novosibirsk (1984)

    Google Scholar 

  3. Andreev, V. K., Kaptsov, O. V., Pukhnachev, V. V., and Rodionov, A. A. Applications of Group-Theoretic Methods in Hydrodynamics, Kluwer, Dordrecht (1998)

    Google Scholar 

  4. Olver, P. and Rosenau, P. The construction of special solutions to partial differential equations. SIAM J. Appl. Math. 47(2), 263–278 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Olver, P. Direct reduction and differential constraints. Proceedings of the Royal Society of London (Series A), 444(1922), 509–523 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Levi, D. and Winternitz, P. Nonclassical symmetry reduction: example of the Boussinesq equation. J. Phys. A: Math. Gen. 22(15), 2915–2924 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Polyanin, A. D. and Zaitsev, V. F. Handbook of Nonlinear Partial Differential Equations, CRC Press, Florida (2004)

    MATH  Google Scholar 

  8. Nemenyi, P. F. Recent developments in inverse and semi-inverse methods in the mechanics of continua. Advances in Applied Mechanics 2(11), 123–151 (1951)

    Article  MathSciNet  Google Scholar 

  9. Hayat, T., Mohyuddin, M. R., and Asghar, S. Some inverse solutions for unsteanian fluid. Tamsui Oxford Journal of Mathematical Sciences 21(1), 1–20 (2005)

    MathSciNet  Google Scholar 

  10. Asghar, S., Mohyuddin, M. R., Hayat, T., and Siddiqui, A. M. On inverse solutions of unsteady riabouchinsky flows of second grade fluid. Tamsui Oxford Journal of Mathematical Sciences 22(2), 221–229 (2006)

    MATH  MathSciNet  Google Scholar 

  11. Labropulu, F. A few more exact solutions of a second grade fluid via inverse method. Mechanics Research Communications 27(6), 713–720 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mohyuddin, M. R. and Ahmad, A. Corrigendum to: inverse solutions for a second-grade fluid for porous medium channel and Hall current effects by Muhammad R. Mohyuddin and Ehsan Ellahi Ashraf. Proc. Indian Acad. Sci. (Math. Sci.) 117(2), 283–285 (2007)

    Article  MATH  Google Scholar 

  13. Siddiqui, A. M., Mohyuddin, M. R., Hayat, T., and Asghar, S. Some more inverse solutions for steady flows of a second-grade fluid. Arch. Mech. 55(4), 373–387 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Siddiqui, A. M., Islam, S., and Ghori, Q. K. Two dimensional viscous incompressible flows in a porous medium. Journal of Porous Media 9(6), 591–596 (2006)

    Article  Google Scholar 

  15. Xie, S. B. Some inverse soluitions for non-Newtonian fluid (in Chinese). Journal of Beijing Normal University (Nature Science) 37(1), 19–21 (2001)

    MATH  Google Scholar 

  16. Liu, C. Q. and Huang, J. Q. Analytical solutions for equations of unsteady flow of non-Newtonian fluids in tube (in Chinese). Appl. Math. Mech. -Engl. Ed. 10(11), 989–996 (1989) DOI:10.1007/BF02014545

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhu, W. H. and Liu, C. Q. Analytical solution of flow of second-order non-Newtonian fluid through annular pipes (in Chinese). Appl. Math. Mech. -Engl. Ed. 14(3), 209–215 (1993) DOI:10.1007/BF02451405

    Article  MATH  Google Scholar 

  18. Huang, J. Q. and Liu, C. Q. An analytical solution and analysis of characters for viscoelastic fluid flow in annular pipe (in Chinese). Appl. Math. Mech. -Engl. Ed. 18(6), 535–541 (1997) DOI:10.1007/BF02454112

    Article  MATH  Google Scholar 

  19. Yürüsoy, M. Similarity solutions for creeping flow and heat transfer in second grade fluids. Appl. Math. Mech. -Engl. Ed. 25(4), 467–474 (2004) DOI:10.1007/BF02437531

    Article  MATH  Google Scholar 

  20. Shen, F., Tan, W. C., Zhao, Y. H., and Masuoka, T. Decay of vortex velocity and diffusion of temperature in a generalized second grade fluid. Appl. Math. Mech. -Engl. Ed. 25(10), 1151–1159 (2004) DOI:10.1007/BF02439867

    Article  MATH  Google Scholar 

  21. Tan, W. C., Xian, F., and Wei, L. An exact solution of unsteady Couette flow of generalized second grade fluid. Chinese Science Bulletin 47(21), 1783–1785 (2002)

    Article  MathSciNet  Google Scholar 

  22. Xu, M. Y. and Tan, W. C. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion. Science in China (Series A) 44(11), 1387–1399 (2001)

    Article  MATH  Google Scholar 

  23. Coleman, B. D. and Noll, W. An approximation theorem for functionals with applications in continuum mechanics. Arch. Rat. Mech. Anal. 6, 355–370 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kaloni, P. N. and Siddqui, A. M. The flow of a second grade fluid. Int. J. Eng. Sci. 21(10), 1157–1169 (1983)

    Article  MATH  Google Scholar 

  25. Rivlin, R. S. and Ericksen, J. L. Stress deformation relations for isotropic materials. J. Rat. Mech. Anal. 4(4), 323–425 (1955)

    MathSciNet  Google Scholar 

  26. Wang, Z. X. and Guo, D. R. Conspectus of Special Functions (in Chinese), Peking University Press, Beijing (2000)

    Google Scholar 

  27. Thomas, A. H. and Todd, B. D. On the Arnold cat map and periodic boundary conditions for planar elongational flow. Molecular Physics 101(23), 3445–3454 (2003)

    Article  Google Scholar 

  28. d’Avino, G., Maffettone, P. L., Hulsen, M. A., and Peters, G. W. M. Numerical simulation of planar elongational flow of concentrated rigid particle suspensions in a viscoelastic fluid. Journal of Non-Newtonian Fluid Mechanics 150(2–3), 65–79 (2008)

    Article  Google Scholar 

  29. Chen, W. F. Non-Newtonian Fluid Mechanics (in Chinese), Science Press, Beijing (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ming Lu  (卢志明).

Additional information

(Contributed by Yu-lu LIU)

Project supported by the National Natural Science Foundation of China (No. 10772110)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Dx., Feng, Sx., Lu, Zm. et al. Application of differential constraint method to exact solution of second-grade fluid. Appl. Math. Mech.-Engl. Ed. 30, 403–412 (2009). https://doi.org/10.1007/s10483-009-0401-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-009-0401-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation