Skip to main content
Log in

Fully discrete Jacobi-spherical harmonic spectral method for Navier-Stokes equations

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A fully discrete Jacobi-spherical harmonic spectral method is provided for the Navier-Stokes equations in a ball. Its stability and convergence are proved. Numerical results show efficiency of this approach. The proposed method is also applicable to other problems in spherical geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Girault V, Raviart P A. Finite element approximation of the Navier-Stokes equations[M]. Lecture Notes in Mathematics, 794, Berlin: Springer-Verlag, 1979.

    Google Scholar 

  2. Guo Benyu. Difference method for fluid dynamics-numerical solution of primitive equations[J]. Scientia Sinica, 1981, 24A:297–312.

    Google Scholar 

  3. Guo Benyu. Difference methods for partial differential equations[M]. Beijing: Science Press, 1988 (in Chinese).

    Google Scholar 

  4. Roache P J. Computational fluid dynamics[M]. 2nd Edition. Albuquerque: Hermosa Publishers, 1976.

    Google Scholar 

  5. Téman R. Navier-Stokes equations[M]. Amsterdam: North-Holland, 1977.

    Google Scholar 

  6. Bernardi C, Maday Y. Spectral methods[M]. In: Ciarlet P G, Lions J L (eds). Handbook of Numerical Analysis, Vol 5, Techniques of Scientific Computing, Amsterdam: Elsevier, 1997, 209–486.

    Google Scholar 

  7. Boyd J P. Chebyshev and Fourier spectral methods[M]. Berlin: Springer-Verlag, 1989.

    Google Scholar 

  8. Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral methods in fluid dynamics[M]. Berlin: Springer-Verlag, 1988.

    Google Scholar 

  9. Funaro P. Polynomial approximations of differential equations[M]. Berlin: Springer-Verlag, 1992.

    Google Scholar 

  10. Gottlieb D, Orszag S A. Numerical analysis of spectral methods: theory and applications[M]. Philadelphia: SIAM-CBMS, 1977.

    Google Scholar 

  11. Guo Benyu. Spectral methods and their applications[M]. Singapore: World Scientific, 1998.

    Google Scholar 

  12. Guo Benyu. Spectral method for Navier-Stokes equations[J]. Scientia Sinica, 1985, 28A:1139–1153.

    Google Scholar 

  13. Guo Benyu, Ma Heping. Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier-Stokes equations[J]. SIAM J Numer Anal, 1993, 30:1066–1083.

    Article  MathSciNet  MATH  Google Scholar 

  14. Hald O H. Convergence of Fourier methods for Navier-Stokes equations[J]. J Comp Phys, 1981, 40:305–317.

    Article  MathSciNet  MATH  Google Scholar 

  15. Maday Y, Quarteroni A. Spectral and pseudospectral approximations of the Navier-Stokes equations[J]. SIAM J Numer Anal, 1982, 19:761–780.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma Heping, Guo Benyu. Combined finite element and pseudospectral method for the three-dimensional Navier-Stokes equations[J]. Chinese Anuals of Math, 1992, 13B:350–367.

    MathSciNet  Google Scholar 

  17. Boyd J P. The choice of spectral functions on a sphere for boundary and eigenvalue problems: a comparison of Chebyshev, Fourier and associated Legendre expansion[J]. Mon Weather Rev, 1978, 106:1184–1191.

    Article  Google Scholar 

  18. Efstathiou G. A model of supernova feedback in galaxy formation[J]. Mon Not R Astron Soc, 2000, 317:697–719.

    Article  Google Scholar 

  19. Haltiner G J, Williams R T. Numerical prediction and dynamical meteorology[M]. New York: John Wiley & Sons, 1980.

    Google Scholar 

  20. Williamson D L, Drake J B, Hack J J, Jakob R, Swarztrauber P N. A standard test set for numerical approximations to the shallow water equations in spherical geometry[J]. J Comp Phys, 1992, 102:211–224.

    Article  MathSciNet  MATH  Google Scholar 

  21. Bramble J H, Pasciak J E. A boundary parametric approximation to linearized scalar potential magnetostatic field problem[J]. Appl Numer Math, 1985, 1:493–514.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cao Weiming, Guo Benyu. A pseudospectral method for vorticity equations on spherical surface[J]. Acta Math Appl Sinica, 1997, 13:176–187.

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo Benyu. A spectral method for the vorticity equation on the surface[J]. Math Comp, 1995, 64:1067–1079.

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo Benyu, Cao Weiming. A spectral method for the fluid flow with low Mach number on the spherical surface[J]. SIAM J Numer Anal, 1995, 32:1764–1777.

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo Benyu. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations[J]. J Math Anal Appl, 2000, 243:373–408.

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo Benyu, Huang Wei. Mixed Jacobi-spherical harmonic spectral method for Navier-Stokes equations[J]. Appl Numer Math, 2007, 57:939–961.

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo Benyu, Wang Lilian. Jacobi interpolation approximations and their applications to singular differential equations[J]. Adv in Comp Math, 2001, 14:227–276.

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo Benyu, Wang Lilian. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces[J]. J of Appro Theor, 2004, 128:1–41.

    Article  MathSciNet  MATH  Google Scholar 

  29. Chorin A J. The numerical solution of the Navier-Stokes equations for an incompressible fluid[J]. Bull Amer Math Soc, 1967, 73:928–931.

    Article  MathSciNet  MATH  Google Scholar 

  30. Chorin A J. Numerical solution of the Navier-Stokes equations[J]. Math Comp, 1968, 22:745–762.

    Article  MathSciNet  MATH  Google Scholar 

  31. Lions J L. On the numerical approximation of some equations arising in hydrodynamics[C]. In: Birkhoff G, Varga R S (eds). Numerical Solution of Field Problems in Continuum Physics, SIAMAMS Proceedings II, 11–23, Providence, Rhode Island: AMS, 1970.

    Google Scholar 

  32. Courant R, Hilbert D. Methods of mathematical physics[M]. Vol. 1. New York: Interscience Publisher, 1953.

    Google Scholar 

  33. Bergh J, Löfström J. Interpolation spaces, an introduction[M]. Berlin: Springer-Verlag, 1976.

    Google Scholar 

  34. Dumas G, Leonard A. A divergence-free spectral expansions method for three-dimensional flow in spherical-gap geometries[J]. J Comp Phys, 1994, 111:205–219.

    Article  MathSciNet  MATH  Google Scholar 

  35. Friedman A. Partial differential equations[M]. New York: Holt, Rinehart and Winston, 1969.

    Google Scholar 

  36. Adams R A. Sobolev spaces[M]. New York: Academic Press, 1975.

    Google Scholar 

  37. Chen Shuxing. A survey of partial differential equations[M]. Beijing: People’s Education Press, 1981 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang  (黄伟).

Additional information

Communicated by GUO Xing-ming

Project supported by the National Natural Science Foundation of China (No. 10771142), Science and Technology Commission of Shanghai Municipality (No. 75105118), Shanghai Leading Academic Discipline Projects (Nos. T0401 and J50101), Fund for E-institutes of Universities in Shanghai (No. E03004), and Innovative Foundation of Shanghai University (No. A.10-0101-07-408)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, W., Guo, By. Fully discrete Jacobi-spherical harmonic spectral method for Navier-Stokes equations. Appl. Math. Mech.-Engl. Ed. 29, 453–476 (2008). https://doi.org/10.1007/s10483-008-0404-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0404-1

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation