Abstract
The genomes of two Penicillium strains were sequenced and studied in this study: strain 2HH was isolated from the digestive tract of Anobium punctatum beetle larva in 1979 and the cellulase hypersecretory strain S1M29, derived from strain 2HH by a long-term mutagenesis process. With these data, the strains were reclassified and insight is obtained on molecular features related to cellulase hyperproduction and the albino phenotype of the mutant. Both strains were previously identified as Penicillium echinulatum and this investigation indicated that these should be reclassified. Phylogenetic and phenotype data showed that these strains represent a new Penicillium species in series Oxalica, for which the name Penicillium ucsense is proposed here. Six additional strains (SFC101850, SFCP10873, SFCP10886, SFCP10931, SFCP10932 and SFCP10933) collected from the marine environment in the Republic of Korea were also classified as this species, indicating a worldwide distribution of this new taxon. Compared to the closely related strain Penicillium oxalicum 114-2, the composition of cell wall-associated proteins of P. ucsense 2HH shows five fewer chitinases, considerable differences in the number of proteins related to β-d-glucan metabolism. The genomic comparison of 2HH and S1M29 highlighted single amino-acid substitutions in two major proteins (BGL2 and FlbA) that can be associated with the hyperproduction of cellulases. The study of melanin pathways shows that the S1M29 albino phenotype resulted from a single amino-acid substitution in the enzyme ALB1, a precursor of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis. Our study provides important knowledge towards understanding species distribution, molecular mechanisms, melanin production and cell wall biosynthesis of this new Penicillium species.




Similar content being viewed by others
Data Availability
Data supporting the results reported in the article can be found in Supplementary Data or publicly available at NCBI databases.
References
Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology+ 150:2029–35. https://doi.org/10.1099/mic.0.26980-0
Aguilar-Pontes MV, Brandl J, McDonnell E et al (2018) The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Stud Mycol 91:61–78. https://doi.org/10.1016/j.simyco.2018.10.001
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK et al (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37:420–423. https://doi.org/10.1038/s41587-019-0036-z
Andrews S, Krueger F, Seconds-Pichon A, Biggins F, Wingett S (2015) FastQC v0.11.5. Computer program and documentation distributed by Babraham Bioinformatics. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021
Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA-UK 6:11. https://doi.org/10.1186/s13100-015-0041-9
Bernard M, Latgé JP (2001) Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol 39:9–17. https://doi.org/10.1080/mmy.39.1.9.17
Blin K, Medema MH, Kottmann R, Lee SY, Weber T (2017) The antiSMASH database, a comprehensive database of microbial secondary metabolite biosynthetic gene clusters. Nucleic Acids Res 45:D555–D559. https://doi.org/10.1093/nar/gkw960
Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421
Camassola M, Dillon AJP (2006) Effect of methylxanthines on production of cellulases by Penicillium echinulatum. Appl Microbiol 102:478–485. https://doi.org/10.1111/j.1365-2672.2006.03098.x
Camassola M, Dillon AJP (2007) Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. Appl Microbiol 103:2196–2204. https://doi.org/10.1111/j.1365-2672.2007.03458.x
Camassola M, Dillon AJP (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crop Prod 29:642–647. https://doi.org/10.1016/j.indcrop.2008.09.008
Camassola M, Dillon AJP (2010) Cellulases and xylanases production by Penicillium echinulatum grown on sugar cane bagasse in solid-state fermentation. Appl Biochem Biotech 162:1889–1900. https://doi.org/10.1007/s12010-010-8967-3
Camassola M, Dillon AJP (2012) Steam-exploded sugar cane bagasse for on-site production of cellulases and xylanases by Penicillium echinulatum. Energ Fuel 26:5316–5320. https://doi.org/10.1021/ef3009162
Camassola M, De Bittencourt LR, Shenem NT, Andreaus J, Dillon AJP (2004) Characterization of the cellulase complex of Penicillium echinulatum. Biocatal Biotransfor 22:391–396. https://doi.org/10.1080/10242420400024532
Carrau JL, Dillon AJP, Ribeiro RTS, Leygue-Alba NMR, Azevedo JL (1981) Produção de enzimas celulolíticas por microrganismos. In: Simpósio Internacional de Engenharia Genética. Piracicaba, SP. pp 39.
Chikhi R, Medvedev P (2014) Informed and automated k-mer size selection for genome assembly. Bioinformatics 30:31–37. https://doi.org/10.1093/bioinformatics/btt310
Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15:532–537
Darling AE, Mau B, Perna NT (2010) Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147. https://doi.org/10.1371/journal.pone.0011147
Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: More models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109
Dillon AJP, Zorgi C, Camassola M, Henriques JAP (2006) Use of 2-deoxyglucose in liquid media for the selection of mutant strains of Penicillium echinulatum producing increased cellulase and β-glucosidase activities. Appl Microbiol Biot 70:740–746. https://doi.org/10.1007/s00253-005-0122-7
Dillon AJP, Bettio M, Pozzan FG, Andrighetti T, Camassola M (2011) A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. Appl Microbiol 111:48–53. https://doi.org/10.1111/j.1365-2672.2011.05026.x
dos Reis L, Fontana RC, da Silva DP et al (2013) Increased production of cellulases and xylanases by Penicillium echinulatum S1M29 in batch and fed-batch culture. Bioresource Technol 146:597–603. https://doi.org/10.1016/j.biortech.2013.07.124
Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biot 93:931–940. https://doi.org/10.1007/s00253-011-3777-2
El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995
Epstein SC, Charkoudian LK, Medema MH (2018) A standardized workflow for submitting data to the Minimum Information about a Biosynthetic Gene cluster (MIBiG) repository: prospects for research-based educational experiences. Stand Genomic Sci 13:16. https://doi.org/10.1186/s40793-018-0318-y
Free SJ (2013) Fungal cell wall organization and biosynthesis. In: Friedmann T, Dunlap JC, Goodwin SF (ed) Advances in genetics. Academic Press, New York, pp 33–82. https://doi.org/10.1016/B978-0-12-407677-8.00002-6
Gostinčar C (2020) Towards genomic criteria for delineating fungal species. J Fungi (Basel) 6:246. https://doi.org/10.3390/jof6040246
Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883
Green MR, Sambrook JF (2012) Molecular cloning: a laboratory manual, Vol. 1. 4th ed. Press CSHL, Cold Springs Harbour Press, New York.
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086
Haas BJ, Salzberg SL, Zhu W et al (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol 9:R7. https://doi.org/10.1186/gb-2008-9-1-r7
Houbraken J, Kocsubé S, Visagie CM et al (2020) Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 95:5–169. https://doi.org/10.1016/j.simyco.2020.05.002
Huerta-Cepas J, Forslund K, Coelho LP et al (2017) Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 34:2115–2122. https://doi.org/10.1093/molbev/msx148
Huerta-Cepas J, Szklarczyk D, Heller D et al (2019) EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/gky1085
Hyde KD, Xu J, Rapior S et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136. https://doi.org/10.1007/s13225-019-00430-9
Inkscape (2019) v. 0.92.2 Computer program and documentation distributed by the authors. https://inkscape.org
Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11:431. https://doi.org/10.1186/1471-2105-11-431
Jones P, Binns D, Chang HY et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240. https://doi.org/10.1093/bioinformatics/btu031
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462. https://doi.org/10.1093/nar/gkv1070
Katoh K, Rozewicki J, Yamada KD (2018) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108
Kent WJ (2002) BLAT–-the BLAST-like alignment tool. Genome Res 12:656–664. https://doi.org/10.1101/gr.229202
Kim D, Langmead B, Salzberg SL (2015) HISAT: afast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317
Kriventseva EV, Tegenfeldt F, Petty TJ et al (2015) OrthoDB v8: update of the hierarchical catalog of orthologs and the underlying free software. Nucleic Acids Res 43:D250–D256. https://doi.org/10.1093/nar/gku1220
Krueger F (2015) Trim Galore! v0.4.4. Computer program and documentation distributed by Babraham Institute. https://github.com/FelixKrueger/TrimGalore
Kubátová A, Hujslová M, Frisvad JC, Chudíčková M, Kolařík M (2019) Taxonomic revision of the biotechnologically important species Penicillium oxalicum with the description of two new species from acidic and saline soils. Mycol Prog 18:215–228. https://doi.org/10.1007/s11557-018-1420-7
Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158. https://doi.org/10.1016/S1087-1845(02)00526-1
Larsson A (2014) AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30:3276–3278. https://doi.org/10.1093/bioinformatics/btu531
Lechner M, Findeiß S, Steiner L et al (2011) Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 12:124. https://doi.org/10.1186/1471-2105-12-124
Lenz AR, Galán-Vasquez E, Balbinot E et al (2020) Gene regulatory networks of Penicillium echinulatum 2HH and Penicillium oxalicum 114–2 inferred by a computational biology approach. Front Microbiol 11:588263. https://doi.org/10.3389/fmicb.2020.588263
Lenz AR, Balbinot E, Oliveira NS et al (2022) Analysis of carbohydrate-active enzymes and sugar transporters in Penicillium echinulatum: a genome-wide comparative study of the fungal lignocellulolytic system. Gene 822:146345. https://doi.org/10.1016/j.gene.2022.146345
Li Z, Yao G, Wu R et al (2015) Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genet 11:e1005509–e1005509. https://doi.org/10.1371/journal.pgen.1005509
Liu G, Zhang L, Wei X et al (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS ONE 8:e55185. https://doi.org/10.1371/journal.pone.0055185
Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413
McDonnell E, Strasser K, Tsang A (2018) Manual gene curation and functional annotation. In: de Vries RP, Tsang A, Grigoriev IV (ed) Methods in molecular biology. New York, NY, pp 185–208. https://doi.org/10.1007/978-1-4939-7804-5_16
Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: IEEE Gateway Computing Environments workshop (GCE), pp 1–8. https://doi.org/10.1109/GCE.2010.5676129
Moller S, Croning MDR, Apweiler R (2002) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 18:218–218. https://doi.org/10.1093/bioinformatics/18.1.218
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185. https://doi.org/10.1093/nar/gkm321
Novello M, Vilasboa J, Schneider WDH, dos Reis L, Fontana RC, Camassola M (2014) Enzymes for second generation ethanol: Exploring new strategies for the use of xylose. RSC Adv 4:21361–21368. https://doi.org/10.1039/c4ra00909f
Nygaard S, Hu H, Li C et al (2016) Reciprocal genomic evolution in the ant-fungus agricultural symbiosis. Nat Commun 7:12233. https://doi.org/10.1038/ncomms12233
Pal AK, Gajjar DU, Vasavada AR (2014) DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med Mycol 52:10–18. https://doi.org/10.3109/13693786.2013.826879
Park MS, Oh SY, Lee S, Eimes JA, Lim YW (2018) Fungal diversity and enzyme activity associated with sailfin sandfish egg masses in Korea. Fungal Ecol 34:1–9. https://doi.org/10.1016/j.funeco.2018.03.004
Parkin EA (1940) The digestive enzymes of some wood-boring beetle larvae. Exp Biol 17:364–377. https://doi.org/10.1242/jeb.17.4.364
Patel PK, Free SJ (2019) The genetics and biochemistry of cell wall structure and synthesis in Neurospora crassa, a model filamentous fungus. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02294
Peng M, Aguilar-Pontes MV, de Vries RP, Mäkelä MR (2018) In silico analysis of putative sugar transporter genes in Aspergillus niger using phylogeny and comparative transcriptomics. Front Microbiol 9:01045. https://doi.org/10.3389/fmicb.2018.01045
Pralea IE, Moldovan RC, Petrache AM et al (2019) From extraction to advanced analytical methods: the challenges of melanin analysis. Int J Mol Sci 20:3943. https://doi.org/10.3390/ijms20163943
Rambaut A (2009) FigTree v.1.4.4. Computer program and documentation distributed by the author. http://tree.bio.ed.ac.uk/software/
Ribeiro DA, Cota J, Alvarez TM et al (2012) The Penicillium echinulatum Secretome on Sugar Cane Bagasse. PLoS ONE 7:e50571–e50571. https://doi.org/10.1371/journal.pone.0050571
Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029
Rubini MR, Dillon AJP, Kyaw CM, Faria FP, Poças-Fonseca MJ, Silva-Pereira I (2010) Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. Appl Microbiol 108:1187–1198. https://doi.org/10.1111/j.1365-2672.2009.04528.x
Schneider WDH, dos Reis L, Camassola M, Dillon AJP (2014) Morphogenesis and production of enzymes by Penicillium echinulatum in response to different carbon sources. Biomed Res Int 2014:10. https://doi.org/10.1155/2014/254863
Schneider WDH, Gonçalves TA, Uchima CA et al (2016) Penicillium echinulatum secretome analysis reveals the fungi potential for degradation of lignocellulosic biomass. Biotechnol Biofuels 9:66. https://doi.org/10.1186/s13068-016-0476-3
Schneider WDH, Gonçalves TA, Uchima CA et al (2018) Comparison of the production of enzymes to cell wall hydrolysis using different carbon sources by Penicillium echinulatum strains and its hydrolysis potential for lignocelullosic biomass. Process Biochem 66:162–170. https://doi.org/10.1016/j.procbio.2017.11.004
Schneider WDH, Fontana RC, Baudel HM et al (2020) Lignin degradation and detoxification of eucalyptus wastes by on-site manufacturing fungal enzymes to enhance second-generation ethanol yield. Appl Energ 262:114493. https://doi.org/10.1016/j.apenergy.2020.114493
Shida Y, Yamaguchi K, Nitta M et al (2015) The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnol Biofuels 8:230. https://doi.org/10.1186/s13068-015-0420-y
Slater GSC, Birney E (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31. https://doi.org/10.1186/1471-2105-6-31
Smit A, Hubley R, Green P (2013) RepeatMasker Open-4.0. Computer program and documentation distributed by the authors. http://www.repeatmasker.org
Solovyev V (2008) Statistical Approaches in Eukaryotic Gene Prediction. In: Balding DJ, Bishop M and Cannings C (ed). Handbook of Statistical Genetics. Third edition. Wiley Online Library, Chapter 4, pp 97–159. https://doi.org/10.1002/9780470061619.ch4
Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033
Stanke M, Schöffmann O, Morgenstern B, Waack S (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7:62. https://doi.org/10.1186/1471-2105-7-62
Teixeira MM, Moreno LF, Stielow BJ et al (2017) Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol 86:1–28. https://doi.org/10.1016/j.simyco.2017.01.001
Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18:1979–1990. https://doi.org/10.1101/gr.081612.108
The UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049
The GIMP (2020) GIMP v2.10.14. Computer program and documentation distributed by Development Team. https://www.gimp.org
Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ (1999) A developmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 181:6469–6477. https://doi.org/10.1128/jb.181.20.6469-6477.1999
Van Munster JM, Nitsche BM, Akeroyd M et al (2015) Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ΔbrlA and ΔflbA. PLoS ONE 10:e0116269. https://doi.org/10.1371/journal.pone.0116269
Villesen P (2007) FaBox: an online toolbox for FASTA sequences. Mol Ecol Notes 7:965–968. https://doi.org/10.1111/j.1471-8286.2007.01821.x
Visagie CM, Houbraken J, Frisvad JC et al (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371. https://doi.org/10.1016/j.simyco.2014.09.001
Waterhouse RM, Seppey M, Simao FA et al (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35:543–548. https://doi.org/10.1093/molbev/msx319
Weirauch MT, Yang A, Albu M et al (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158:1431–1443. https://doi.org/10.1016/j.cell.2014.08.009
Woo PCY, Tam EWT, Chong KTK et al (2010) High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J 277:3750–3758. https://doi.org/10.1111/j.1742-4658.2010.07776.x
Wu TD, Reeder J, Lawrence M, Becker G, Brauer MJ (2016) GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. In: Mathé E, Davis S (ed) Methods in molecular biology. New York, NY, pp 283–334. https://doi.org/10.1007/978-1-4939-3578-9_15
Yao G, Wu R, Kan Q et al (2016) Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum. Biotechnol Biofuels 9:78. https://doi.org/10.1186/s13068-016-0491-4
Zhang H, Yohe T, Huang L et al (2018) DbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46:W95-101. https://doi.org/10.1093/nar/gky418
Acknowledgements
We would like to thank the Coordination of Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq), the Bahia State University (UNEB) and the University of Caxias do Sul (UCS).
Funding
We are grateful to the Coordination for the Improvement of Higher Education Personnel (CAPES) for the DSc scholarship (88887.158496/2017-00 to ARL). This research was supported by grants from CAPES (3255/2013) and the National Council for Scientific and Technological Development (CNPq) (472153/2013-7). MC and AJPD are CNPq Research Fellowship. We are grateful to Bahia State University (UNEB) for the leave of absence (3.145/2016 to ARL) and financial support.
Author information
Authors and Affiliations
Contributions
Conceptualization, methodology, investigation, visualisation, writing—original draft, review and editing: [ARL]; Assembly and annotation of genomes: [ARL, NSO and FPA]; Software for genome annotation and deposit of genomes: [EB]; Macro- and micromorphological characterization: [JH]; Collection and sequencing of molecular markers from strains of the Republic of Korea [MSP and YWL]; Macromorphological observation of albino phenotype: [RCF]; Supervision: [SAS]; Project administration, funding acquisition and resources: [MC and AJPD].
Corresponding author
Ethics declarations
Conflict of interest
All authors declare no conflict of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publish
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Lenz, A.R., Balbinot, E., de Abreu, F.P. et al. Taxonomy, comparative genomics and evolutionary insights of Penicillium ucsense: a novel species in series Oxalica. Antonie van Leeuwenhoek 115, 1009–1029 (2022). https://doi.org/10.1007/s10482-022-01746-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10482-022-01746-4