Skip to main content
Log in

Cellulomonas aurantiaca sp. nov., isolated from a soil sample from a tangerine field

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A Gram-stain positive, facultatively aerobic, motile and rod-shaped bacterial strain, designated THG-SMD2.3T, was isolated from a soil sample collected in a tangerine field, Republic of Korea. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Cellulomonas and to be closely related to Cellulomonas fimi ATCC 484T (98.5%), Cellulomonas biazotea DSM 20112T (98.3%), Cellulomonas chitinilytica X.bu-bT (98.0%), Cellulomonas xylanilytica XIL11T (97.2%), Cellulomonas humilata ATCC 25174T (97.1%) and Cellulomonas composti TR7-06T (97.0%). The 16S rRNA gene sequence similarities with other current species of the genus Cellulomonas were in the range 95.4–96.6%. Catalase and oxidase tests were found to be positive. The DNA G+C content was determined to be 73.0 mol%. DNA-DNA hybridization values between strain THG-SMD2.3T and C. fimi ATCC 484T, C. biazotea DSM 20112T, C. chitinilytica X.bu-bT, C. xylanilytica XIL11T, C. humilata ATCC 25174T and C. composti TR7-06T were 58.1 ± 1.6%, 56.7 ± 0.8%, 30.3 ± 1.6%, 22.8 ± 1.6%, 19.9 ± 1.6%, and 13.5 ± 3.0%, respectively. Strain THG-SMD2.3T was also found to be able to grow at 20–42 °C, at 0–3% NaCl and at pH 5.5–10. The major fatty acids were identified as anteiso-C15:0, iso-C15:0, anteiso-C17:0 and iso-C14:0. The predominant menaquinone was identified as tetrahydrogenated menaquinones with nine isoprene units [MK-9(H4)]. The polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and two unidentified phospholipids. Based on these phenotypic, genotypic and phylogenetic characterisations strain THG-SMD2.3T (= KACC 19341T = CGMCC 1.16303T) is concluded to represent a novel species of the genus Cellulomonas, for which the name Cellulomonas aurantiaca sp. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

DPG:

Diphosphatidylglycerol

PG:

Phosphatidylglycerol

PE:

Phosphatidylethanolamine

PL:

Unidentified phospholipids

AL:

Unidentified aminophospholipid

GL:

Unidentified glycolipid

L:

Unidentified lipid

References

  • Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T, Fujiwara T, Ohkuma M (2014) Cellulomonas pakistanensis sp. nov., a moderately halotolerant Actinobacteria. Int J Syst Evol Microbiol 64:2305–2311

    Article  CAS  PubMed  Google Scholar 

  • An DS, Im WT, Yang HC, Kang MS, Kim KK, Jin L, Ki MK, Lee ST (2005) Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Bagnara C, Toci R, Gaudin C, Belaich JP (1985) Isolation and characterization of a cellulolytic microorganism, Cellulomonas fermentans sp. nov. Int J Syst Bacteriol 35:502–507

    Article  CAS  Google Scholar 

  • Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM (1923) Bergey’s manual of determinative bacteriology, 1st edn. The Williams & Wilkins Co, Baltimore, pp 1–442

    Google Scholar 

  • Brown JM, Frazier RP, Morey RE, Steigerwalt AG, Pellegrini GJ, Daneshvar MI, Hollis DG, Mcneil MM (2005) Phenotypic and genetic characterization of clinical isolates of CDC coryneform group A-3: proposal of a new species of Cellulomonas, Cellulomonas denverensis sp. nov. J Clin Microbiol 43:1732–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470

    Article  CAS  Google Scholar 

  • Collins MD, Pascual C (2000) Reclassification of Actinomyces humiferus (Gledhill and Casida) as Cellulomonas humilata nom. corrig., comb. nov. Int J Syst Evol Microbiol 50:661–663

    Article  PubMed  Google Scholar 

  • Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Eleberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-daloii MR, Matte MH, Shahamat M, Colwell RR, Sowers KR (2000) Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 50:993–996

    Article  Google Scholar 

  • Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  • Fautz E, Reichenbach H (1980) A simple test for flexirubin-type pigments. Fems Microbiology Lettes 8:87–91

    Article  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Funke G, Pascual Ramos C, Collins MD (1995) Identification of some clinical strains of CDC coryneform group A-3 and A-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov., for some group A-3 strains. J Clin Microbiol 33:2091–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hatayama K, Esaki K, Ide T (2013) Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:60–65

    Article  PubMed  Google Scholar 

  • Hu HY, Lim BR, Goto N, Fujie K (2001) Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24

    Article  CAS  PubMed  Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Schumann P, Weiss N, Stackebrandt E (2005) Cellulomonas bogoriensis sp. nov., an alkaliphilic cellulomonad. Int J Syst Evol Microbiol 55:1711–1714

    Article  CAS  PubMed  Google Scholar 

  • Kang MS, Im WT, Jung HM, Kim MK, Goodfellow M, Kim KK, Yang HC, An DS, Lee ST (2007) Cellulomonas composti sp. nov., a cellulolytic bacterium isolated from cattle farm compost. Int J Syst Evol Microbiol 57:1256–1260

    Article  CAS  PubMed  Google Scholar 

  • Kellerman KF, Mcbeth IG (1912) The fermentation of cellulose. Zentralblatt fur Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene. Abteilung II 34:485–494

    CAS  Google Scholar 

  • Kellerman KF, Mcbeth IG, Scale FM, Smith NR (1913) Identification and classification of cellulose dissolving Bacteria. Zentralblatt fur Bakteriologie Parasitenkunde Infektionskrankheiten und Hygiene. Abteilung II. 39:502–522

    Google Scholar 

  • Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1987) Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19:161–206

    Article  CAS  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE (2012) Non contiguous-finished genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 7:258–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee CM, Weon HY, Hong SB, Jeon YA, Schumann P, Kroppenstedt RM, Kwon SW, Stackebrandt E (2008) Cellulomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:2925–2929

    Article  CAS  PubMed  Google Scholar 

  • Mcbeth IG, Scales FM (1913) The destruction of cellulose by bacteria and filamentous fungi. US Dep Agric Bureau Plant Ind Bull 266:1–52

    Google Scholar 

  • Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  • Minnikin DE (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Rivas R, Trujillo ME, Mateos PF, Martínez-molina E, Velázquez E (2004) Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. Int J Syst Evol Microbiol 54:533–536

    Article  CAS  PubMed  Google Scholar 

  • Rusznyák A, Tóth EM, Schumann P, Spröer C, Makk J, Szabó G, Vladár P, Márialigeti K, Borsodi AK (2011) Cellulomonas phragmiteti sp. nov., a cellulolytic bacterium isolated from reed (Phragmites australis) periphyton in a shallow soda pond. Int J Syst Evol Microbiol 61:1662–1666

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6

    Google Scholar 

  • Shi Z, Luo G, Wang G (2012) Cellulomonas carbonis sp. nov., isolated from coal mine soil. Int J Syst Evol Microbiol 62:2004–2010

    Article  CAS  PubMed  Google Scholar 

  • Skerman VBD (1967) A guide to the identification of the genera of bacteria, 2nd edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic Vibrio luminous bacteria isolated from some Hydrozoa and Bryozoa species. Microb Ecol 56:625–636

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Kandler O (1980) Cellulomonas cartae sp. nov. Int J Syst Bacteriol 30:186–188

    Article  CAS  Google Scholar 

  • Stackebrandt E, Keddie RM (1986) Genus cellulomonas. In: Garrity G, Brenner DJ, Krieg NR, Staley JR (eds) Bergey’s manual of systematic bacteriology, vol 2. Springer, Berlin, pp 1325–1329

    Google Scholar 

  • Stackebrandt E, Schumann P, Prauser H (2006) The prokaryotes: a handbook on the biology of bacteria. The family Cellulomonadaceae. Springer, New York, pp 983–1001

    Book  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan ZF, Trinh H, Moya G, Lin P, Li CT, Kook MC, Yi TH (2015) Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 66:4754–4759

    Article  CAS  Google Scholar 

  • Yoon MH, Ten LN, Im WT, Lee ST (2008) Cellulomonas chitinilytica sp. nov., a chitinolytic bacterium isolated from cattle-farm compost. Int J Syst Evol Microbiol 58:1878–1884

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xi L, Qiu D, Song L, Dai X, Ruan J, Huang Y (2013) Cellulomonas marina sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 63:3014–3018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ012655042018)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hoo Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no direct or indirect conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Kook, M., Yan, ZF. et al. Cellulomonas aurantiaca sp. nov., isolated from a soil sample from a tangerine field. Antonie van Leeuwenhoek 112, 1623–1632 (2019). https://doi.org/10.1007/s10482-019-01288-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01288-2

Keywords

Navigation