Skip to main content
Log in

Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The damaging effect of high oxygen concentration on growth of Escherichia coli is well established. Over-oxygenation increases the intracellular concentration of reactive oxygen species (ROS), causing the destruction of the [4Fe–4S] cluster of dehydratases and limiting the biosynthesis of both branched-chain amino acids and nicotinamide adenine dinucleotide. A key enzyme that reduces the damaging effect of superoxide is superoxide dismutase (SOD). Its transcriptional regulation is controlled by global transcription regulators that respond to changes in oxygen and iron concentrations and pH. Production of biological compounds from E. coli is currently achieved using cultures grown to high cell densities which require oxygen-enriched air supply. It is, therefore, important to study the effect of over-oxygenation on E. coli metabolism and the bacterial protecting mechanism. The effect of over-oxygenation on the superoxide dismutase regulation system was evaluated in cultures grown in a bioreactor by increasing the oxygen concentration from 30 to 300 % air saturation. Following the change in the dissolved oxygen (DO), the expression of sodC, the periplasmic CuZn-containing SOD, and sodA, the cytosolic Mn-containing SOD, was higher in all the tested strains, while the expression of the sodB, the cytosolic Fe-containing SOD, was lower. The down-regulation of the sodB was found to be related to the activation of the small RNA RyhB. It was revealed that iron homeostasis, in particular ferric iron, was involved in the RyhB activation and in sodB regulation but not in sodA. Supplementation of amino acids to the culture medium reduced the intracellular ROS accumulation and reduced the activation of both SodA and SodC following the increase in the oxygen concentration. The study provides evidence that at conditions of over-oxygenation, sodA and sodC are strongly regulated by the amount of ROS, in particular superoxide; and sodB is regulated by iron availability through the small RNA RyhB. In addition, information on the impact of NADH, presence of amino acids and type of iron on SOD regulation, and consequently, on the ROS concentration is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NADPH:

Nicotinamide adenine dinucleotide phosphate reduced

SOD:

Superoxide dismutase

ROS:

Reactive oxygen species

EDTA:

Ethylenediaminetetraacetic acid

dO2 :

Dissolved oxygen concentration

OD600 :

Optical density measured at 600 nm of wavelength

References

  • Alıcılar A, Meriç G, Akkurt F, Sendil O (2008) Air oxidation of ferrous iron in water. J Int Environ Appl Sci 3:409–414

    Google Scholar 

  • Arbel-Goren R, Tal A, Friedlander T, Meshner S, Costantino N, Court DL, Stavans J (2013) Effects of post-transcriptional regulation on phenotypic noise in Escherichia coli. Nucleic Acid Res 41:4825–4834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arbel-Goren R, Tal A, Parasar B, Dym A, Costantino N, Muñoz-García J, Court DL, Stavans J (2016) Transcript degradation and noise of small RNA-controlled genes in a switch activated network in Escherichia coli. Nucleic Acid Res 44:6707–6720

    Article  PubMed  PubMed Central  Google Scholar 

  • Baez A, Shiloach J (2013) Escherichia coli avoids high dissolved oxygen stress by activation of SoxRS and manganese-superoxide dismutase. Microb Cell Fact 12:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baez A, Shiloach J (2014) Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb Cell Fact 13:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Battistoni A, Donnarumma G, Greco R, Valenti P, Rotilio G (1998) Overexpression of a hydrogen peroxide-resistant periplasmic Cu, Zn superoxide dismutase protects Escherichia coli from macrophage killing. Biochem Biophys Res Commun 243:804–807

    Article  CAS  PubMed  Google Scholar 

  • Bauer S, Shiloach J (1974) Maximal exponential growth rate and yield of E. coli obtainable in a bench-scale fermentor. Biotechnol Bioeng 16:933–941

    Article  CAS  PubMed  Google Scholar 

  • Benov L, Chang LY, Day B, Fridovich I (1995) Copper, zinc superoxide dismutase in Escherichia coli: periplasmic localization. Arch Biochem Biophys 319:508–511

    Article  CAS  PubMed  Google Scholar 

  • Boehme DE, Vincent K, Brown OR (1976) Oxygen and toxicity inhibition of amino acid biosynthesis. Nature 262:418–420

    Article  CAS  Google Scholar 

  • Brown OR (1972) Reversible inhibition of respiration of Escherichia coli by hyperoxia. Microbios 5:7–16

    CAS  PubMed  Google Scholar 

  • Brown OR, Yein F (1978) Dihydroxyacid dehydratase: the site of hyperbaric oxygen poisoning in branch-chain amino acids biosynthesis. Biochem Biophys Res Commun 85:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Brown OR, Yein F, Boehme D, Foudin L, Song CS (1979) Oxygen poisoning of NAD biosynthesis: a proposed site of cellular oxygen toxicity. Biochem Biophys Res Commun 91:982–990

    Article  CAS  PubMed  Google Scholar 

  • Brown OR, Smyk-Randall E, Draczynsca-Lusiak B, Fee JA (1995) Dihydroxyacid dehydratase, a [4Fe–4S] cluster-containing enzyme in Escherichia coli. Effects of intracellular superoxide dismutase on its inactivation by oxidant stress. Arch Biochem Biophys 319:10–22

    Article  CAS  PubMed  Google Scholar 

  • Campian JL, Qian M, Gao X, Eaton JW (2004) Oxygen tolerance and coupling of mitochondrial electron transport. J Biol Chem 279:46580–46587

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61:876–885

    Article  CAS  Google Scholar 

  • Compan I, Touati D (1993) Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol 175:1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draczynska-Lusiak B, Brown OR (1992) Protein A of quinolinate synthetase is the site of oxygen poisoning of pyridine nucleotide coenzyme synthesis in Escherichia coli. Free Radic Biol Med 13:689–693

    Article  CAS  PubMed  Google Scholar 

  • Dubrac S, Touati D (2000) Fur positive regulation of iron superoxide dismutase in Escherichia coli: functional analysis of the sodB promoter. J Bacteriol 182:3802–3808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint DH, Tuminello JF, Emptage MH (1993) The inactivation of Fe–S cluster containing hydro-lyases by superoxide. J Biol Chem 268:22369–22376

    CAS  PubMed  Google Scholar 

  • Gardner PR, Fridovich I (1991) Quinolinate synthetase: the oxygen-sensitive site of the novo NAD(P)+ biosynthesis. Arch Biochem Biophys 284:106–111

    Article  CAS  PubMed  Google Scholar 

  • Gort AS, Ferber DM, Imlay JA (1999) The regulation and role of the periplasmic copper, zinc superoxide dismutase of Escherichia coli. Mol Microbiol 32:179–191

    Article  CAS  PubMed  Google Scholar 

  • Gregory EM, Fridovich I (1973) Induction of superoxide dismutase by molecular oxygen. J Bacteriol 114:543–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M, Imlay JA (2013) Superoxide poisons mononuclear iron enzymes by causing mismetallation. Mol Microbiol 89:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley JB, Santangelo GM, Rasmussen H, Goldfine H (1978) Dependence of Escherichia coli hyperbaric oxygen toxicity on the lipid acyl chain composition. J Bacteriol 134:808–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan HM, Fridovich I (1977) Regulation of the synthesis of superoxide dismutase in Escherichia coli. Induction by methyl viologen. J Biol Chem 252:7667–7672

    CAS  PubMed  Google Scholar 

  • Henard CA, Bourret TJ, Song M, Vázquez-Torres A (2010) Control of redox balance by the stringent response regulatory protein promotes antioxidant defenses of Salmonella. J Biol Chem 285:36785–36793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques JF, Jang S, Prévost K, Desnoyers G, Desmarais M, Imlay J, Massé E (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 62:1181–1190

    Article  CAS  PubMed  Google Scholar 

  • Keele BB Jr, McCord JM, Fridovich I (1970) Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J Biol Chem 245:6176–6181

    CAS  PubMed  Google Scholar 

  • Korshunov S, Imlay JA (2006) Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol 188:6326–6334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–105

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Nimtz M, Rinas U (2014) The metabolic potential of Escherichia coli BL21 in defined and rich medium. Microb Cell Fact 13:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L, Rosenbusch JP, Moras D (1998) Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–778

    Article  CAS  PubMed  Google Scholar 

  • Massé E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci USA 99:4620–4625

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Takagi M, Imanaka T (1993) Regulation of Escherichia coli superoxide dismutase genes (sodA and sodB) by oxygen. Biotechnol Lett 15:229–234

    Article  CAS  Google Scholar 

  • Moon K, Gottesman S (2009) A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol Microbiol 74:1314–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrete A, Majdalani N, Phue JN, Shiloach J (2013) Reducing acetate excretion from E. coli K-12 by over-expressing the small RNA SgrS. New Biotechnol 30:269–273

    Article  CAS  Google Scholar 

  • Niederhoffer EC, Fee JA (1990) Novel effect of aromatic compounds on the iron-dependent expression of the Escherichia coli K12 manganese superoxide dismutase (sodA) gene. Biol Met 3:237–241

    Article  CAS  PubMed  Google Scholar 

  • Pomposiello PJ, Bennik MHJ, Demple B (2001) Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183:3890–3902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semsey S (2014) A mixed incoherent feed-forward loop allows conditional regulation of response dynamics. PLoS One 9:e91243

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo SW, Kim D, Szubin R, Palsson BO (2015) Genome-wide reconstruction of OxyR and SoxRS transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. Cell Rep 12:1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Shiloach J, Fass R (2005) Growing E coli to high cell density-A historical perspective on method development. Biotechnol Adv 23:345–357

    Article  CAS  PubMed  Google Scholar 

  • Shin CS, Hong MS, Lee J (1996) Oxygen transfer correlation in high cell density culture of recombinant E. coli. Biotechnol Tech 10:679–682

    Article  Google Scholar 

  • Storz G, Zheng M (2000) Oxidative stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Wasington DC, pp 47–59

    Google Scholar 

  • Yost FJ, Fridovich I (1973) An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem 248:4905–4908

    CAS  PubMed  Google Scholar 

  • Zhao HW, Ali SS, Haddad GG (2012) Does hyperoxia selection cause adaptive alterations of mitochondrial electron transport chain activity leading to a reduction of superoxide production? Antioxid Redox Signal 16:1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. D. Livnat for critical editorial assistance.

Authors’ contribution

AB designed and conducted the experiments. AB and JS together analysed the data and wrote the manuscript. All the authors read and approved the final manuscript.

Funding

Funding was provided by the intramural program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Shiloach.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baez, A., Shiloach, J. Increasing dissolved-oxygen disrupts iron homeostasis in production cultures of Escherichia coli . Antonie van Leeuwenhoek 110, 115–124 (2017). https://doi.org/10.1007/s10482-016-0781-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-016-0781-7

Keywords

Navigation