Skip to main content
Log in

Acetate kinase-an enzyme of the postulated phosphoketolase pathway in Methylomicrobium alcaliphilum 20Z

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Recombinant acetate kinase (AcK) was obtained from the aerobic haloalkalitolerant methanotroph Methylomicrobium alcaliphilum 20Z by heterologous expression in Escherichia coli and purification by affinity chromatography. The substrate specificity, the kinetics and oligomeric state of the His6-tagged AcK were determined. The M. alcaliphilum AcK (2 × 45 kDa) catalyzed the reversible phosphorylation of acetate into acetyl phosphate and exhibited a dependence on Mg2+ or Mn2+ ions and strong specificity to ATP/ADP. The enzyme showed the maximal activity and high stability at 70 °C. AcK was 20-fold more active in the reaction of acetate synthesis compared to acetate phosphorylation and had a higher affinity to acetyl phosphate (K m 0.11 mM) than to acetate (K m 5.6 mM). The k cat /K m ratios indicated that the enzyme had a remarkably high catalytic efficiency for acetate and ATP formation (k cat/K m = 1.7 × 106) compared to acetate phosphorylation (k cat/K m = 2.5 × 103). The ack gene of M. alcaliphilum 20Z was shown to be co-transcribed with the xfp gene encoding putative phosphoketolase. The Blast analysis revealed the ack and xfp genes in most genomes of the sequenced aerobic methanotrophs, as well as methylotrophic bacteria not growing on methane. The distribution and metabolic role of the postulated phosphoketolase shunted glycolytic pathway in aerobic C1-utilizing bacteria is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aceti DJ, Ferry JG (1988) Purification and characterization of acetate kinase from acetate grown Methanosarcina thermophila. J Bacteriol 263:15444–15448

    CAS  Google Scholar 

  • Bock A-K, Glasemacher J, Schmidt R, Schönheit P (1999) Purification and characterization of two extremely thermostable enzymes, phosphate acetyltransferase and acetate kinase, from the hyperthermophilic eubacterium Thermotoga maritima. J Bacteriol 181:1861–1867

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bowmann CM, Valdez RO, Nishimura JS (1976) Acetate kinase from Veillonella alcalescens. Regulations of enzyme activity by succinate and substrates. J Biol Chem 251:3117–3121

    Google Scholar 

  • Chittori S, Savithri HS, Murthy MRN (2012) Structural and mechanistic investigations on Salmonella typhimurium acetate kinase (AckA): identification of a putative ligand binding pocket at the dimeric interface. BMC Struct Biol 12:24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fei Q, Guarnieri MT, Tao L, Laurens LM, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32:596–614

    Article  CAS  PubMed  Google Scholar 

  • Gorrell A, Lawrence SH, Ferry JG (2005) Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila. J Biol Chem 280:10731–10742

    Article  CAS  PubMed  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ingram-Smith C, Gorrell A, Lawrence SH, Iyer P, Smith K, Ferry JG (2005) Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase. J Bacteriol 187:2386–2394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang H, Chen Y, Pa Jiang, Zhanga C, Smith TJ, Murrell JC, Xinga X-H (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG (2015) Methane biocatalysis: selecting the right microbe. Biotechnology for biofuel production and optimization. doi: 10.1016/B978-0-444-63475-7.00013-3

  • Kalyuzhnaya M, Khmelenina VN, Kotelnikova S, Holmquist L, Pedersen K, Trotsenko YA (1999) Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. Syst Appl Microbiol 22:565–572

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Lamb A, Gowda GA, Raftery D, Fu Y, Bringel F, Vuilleumier S, Beck D, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in methanotrophic bacterium. Nat Commun 4:2785. doi:10.1038/ncomms3785

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Kalyuzhnaya MG, Sakharovsky VG, Suzina NE, Trotsenko YA, Gottschalk G (1999) Osmoadaptation in halophilic and alkaliphilic methanotrophs. Arch Microbiol 172:321–329

    Article  CAS  PubMed  Google Scholar 

  • Khmelenina VN, Rozova ON, But YS, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA (2015a) Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (Review). Appl Biochem Microbiol (Moscow) 51:150–158

    Article  CAS  Google Scholar 

  • Khmelenina VN, Rozova ON, But CY, Mustakhimov II, Reshetnikov AS, Beschastnyi AP, Trotsenko YA (2015b) Prikl Biokhim Mikrobiol 51:140–150

    CAS  PubMed  Google Scholar 

  • Knorr R, Ehrmann MA, Vogel RF (2001) Cloning, expression, and characterization of acetate kinase from Lactobacillus sanfranciscensis. Microbiol Res 156:267–277

    Article  CAS  PubMed  Google Scholar 

  • Lontoh S, Semrau JD (1998) Methane and trichloroethylene oxidation by the particulate methane monooxygenase of Methylosinus trichosporium OB3b. Appl Environ Microbiol 64:1106–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lontoh S, Zahn JA, DiSpirito AA, Semrau JD (2000) Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase. FEMS Microbiol Lett 186:109–113

    Article  CAS  PubMed  Google Scholar 

  • Murrell JC, Jetten MSM (2009) The microbial methane cycle. Environ Microbiol Rep 1:279–284

    Article  CAS  PubMed  Google Scholar 

  • Nakijima H, Suzuki K, Imahori K (1978) Purification and properties of acetate kinase from Bacillus stearothermophilus. J Biochem 84:193–203

    Google Scholar 

  • Ratledge C, Holdsworth JE (1985) Properties of a pentulose-5-phosphate phosphoketolase from yeast grown on xylose. Appl Microbiol Biotechnol 22:217–221

    Article  CAS  Google Scholar 

  • Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalitolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184:286–296

    Article  CAS  PubMed  Google Scholar 

  • Reshetnikov AS, Rozova ON, Khmelenina VN, Mustakhimov II, Beschastny AP, Murrell JC, Trotsenko YA (2008) Characterization of the pyrophosphate-dependent 6-phosphofructokinase from Methylococcus capsulatus Bath. FEMS Microbiol Lett 288:202–210

    Article  CAS  PubMed  Google Scholar 

  • Rose IA, Grunberg-Manago M, Korey SF, Ochoa S (1954) Enzymatic phosphorylation of acetate. J Biol Chem 211:737–756

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sánchez B, Zúniga Manuel F, González-Candelas Reyes-Gavilán CG, Margollez A (2010) Bacterial and eukaryotic phosphoketolases: phylogeny, distribution and evolution. J Mol Microbiol Biotechnol 18:37–51

    Article  PubMed  Google Scholar 

  • Schaupp A, Ljungdahl LG (1974) Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch Microbiol 100:121–129

    Article  CAS  PubMed  Google Scholar 

  • Sharp CE, Smirnova AV, Kalyuzhnaya MG, Bringel F, Hirayama H, Jetten MSM, Reshetnikov AS, Klotz MG, Knief C, Kyrpides N, Op den Camp HJM, Sakai Y, Shapiro N, Trotsenko YA, Vuilleumier S, Woyke T, Dunfield PF (2015) Draft genome sequence of the moderately halophilic methanotroph, Methylohalobius crimeensis strain 10Ki. Genome Announc 3(3):e00644

    Article  PubMed Central  PubMed  Google Scholar 

  • Semrau J (2011) Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol. doi:10.3389/fmicb.2011.00209

    PubMed Central  PubMed  Google Scholar 

  • Slater GG (1969) Stable pattern formation and determination of molecular size by pore-limit electrophoresis. Anal Chem 41:1039–1041

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol doi: 10.1093/molbev/msm092

  • Thomson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Article  Google Scholar 

  • Trotsenko YA, Murrell JC (2008) Metabolic aspects of obligate aerobic methanotrophy. Adv Appl Microbiol 63:183–229

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Science Foundation, Project No 14-14-01045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga N. Rozova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozova, O.N., Khmelenina, V.N., Gavletdinova, J.Z. et al. Acetate kinase-an enzyme of the postulated phosphoketolase pathway in Methylomicrobium alcaliphilum 20Z. Antonie van Leeuwenhoek 108, 965–974 (2015). https://doi.org/10.1007/s10482-015-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0549-5

Keywords