Skip to main content
Log in

Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A strain development program was initiated to improve the tolerance of the pentose-fermenting yeast Pachysolen tannophilus to inhibitors in lignocellulosic hydrolysates. Several rounds of UV mutagenesis followed by screening were used to select for mutants of P. tannophilus NRRL Y2460 with improved tolerance to hardwood spent sulfite liquor (HW SSL) and acetic acid in separate selection lines. The wild type (WT) strain grew in 50 % (v/v) HW SSL while third round HW SSL mutants (designated UHW301, UHW302 and UHW303) grew in 60 % (v/v) HW SSL, with two of these isolates (UHW302 and UHW303) being viable and growing, respectively, in 70 % (v/v) HW SSL. In defined liquid media containing acetic acid, the WT strain grew in 0.70 % (w/v) acetic acid, while third round acetic acid mutants (designated UAA301, UAA302 and UAA303) grew in 0.80 % (w/v) acetic acid, with one isolate (UAA302) growing in 0.90 % (w/v) acetic acid. Cross-tolerance of HW SSL-tolerant mutants to acetic acid and vice versa was observed with UHW303 able to grow in 0.90 % (w/v) acetic acid and UAA302 growing in 60 % (v/v) HW SSL. The UV-induced mutants retained the ability to ferment glucose and xylose to ethanol in defined media. These mutants of P. tannophilus are of considerable interest for bioconversion of the sugars in lignocellulosic hydrolysates to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  • Bajwa PK, Shireen T, D’Aoust F, Pinel D, Martin VJJ, Trevors JT, Lee H (2009) Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng 104:892–900

    Article  CAS  PubMed  Google Scholar 

  • Bajwa PK, Pinel D, Martin VJJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microb Methods 81:179–186

    Article  CAS  Google Scholar 

  • Bajwa PK, Phaenark C, Grant N, Zhang X, Paice M, Martin VJJ, Trevors JT, Lee H (2011) Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour Technol 102:9965–9969

    Article  CAS  PubMed  Google Scholar 

  • Bajwa PK, Harner NK, Richardson TL, Sidhu S, Habash MB, Trevors JT, Lee H (2013) Genome shuffling protocol for the pentose-fermenting yeast Scheffersomyces stipitis. In: Gupta VK, Tuohy MG, Ayyachamy M, Turner KM, O’Donovan A (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, pp 447–454

    Chapter  Google Scholar 

  • Banerjee N, Bhatnagar R, Viswanathan L (1981) Development of resistance in Saccharomyces cerevisiae against inhibitory effect of browning reaction products. Enzyme Microb Technol 3:24–28

    Article  CAS  Google Scholar 

  • Barbosa MDS, Lee H, Collins-Thompson DL (1990a) Additive effects of alcohols, their acidic by-products, and temperature on the yeast Pachysolen tannophilus. Appl Environ Microb 56:545–550

    CAS  Google Scholar 

  • Barbosa MDS, Lee H, Schneider H, Forsberg CW (1990b) Temperature mediated changes of D-xylose metabolism in the yeast Pachysolen tannophilus. FEMS Microb Lett 72:35–40

    Article  CAS  Google Scholar 

  • Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102:10868–10874

    Article  CAS  PubMed  Google Scholar 

  • Bicho PA, Runnals PL, Cunningham JD, Lee H (1988) Induction of xylose reductase and xylitol dehydrogenase activties in Pachysolen tannophilus and Pichia stipitis on mixed sugars. Appl Environ Microb 54:50–54

    CAS  Google Scholar 

  • Bruinenberg PM, Debot PHM, Van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microb Biotechnol 19:256–260

    Article  CAS  Google Scholar 

  • Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  CAS  PubMed  Google Scholar 

  • Clark T, Wedlock N, James AP, Deverell K, Thornton RJ (1986) Strain improvement of xylose-fermenting yeast Pachysolen tannophilus by hybridization of two mutant strains. Biotechnol Lett 8:801–806

    Article  CAS  Google Scholar 

  • du Preez JC, Bosch M, Prior BA (1986) Xylose fermentation by Candida shehatae and Pichia stipitis: effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8:360–364

    Article  Google Scholar 

  • Helle SS, Murray A, Lam J, Cameron DR, Duff SJB (2004) Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol 92:163–171

    Article  CAS  PubMed  Google Scholar 

  • James AP, Zahab DM (1982) A genetic system for Pachysolen tannophilus, a pentose-fermenting yeast. J Gen Microb 128:2297–2301

    Google Scholar 

  • James AP, Zahab DM (1983) The construction and genetic analysis of polyploids and aneuploids of the pentose-fermenting yeast, Pachysolen tannophilus. J Gen Microb 129:2489–2494

    Google Scholar 

  • James SA, Collins MD, Robert IN (1994) Genetic interrelationship among species of the genus Zygosaccharomyces as revealed by small subunit rRNA gene sequences. Yeast 10:871–881

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW (1984) Mutants of Pachysolen tannophilus showing enhanced rates of growth and ethanol formation from D-xylose. Enzyme Microb Technol 6:254–258

    Article  CAS  Google Scholar 

  • Jeffries TW (2008) Engineering the Pichia stipitis genome for fermentation of hemicellulose hydrolysates. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, DC, pp 37–47

    Google Scholar 

  • Keating JD, Panganiban C, Mansfield SD (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93:1196–1206

    Article  CAS  PubMed  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microb Biotechnol 66:10–26

    Article  CAS  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    Article  CAS  Google Scholar 

  • Lawford HG, Rousseau JD (1993) Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered Escherichi coli. Appl Biochem Biotechnol 39–40:667–685

    Article  PubMed  Google Scholar 

  • Lee YY, McCaskey TA (1983) Hemicellulose hydrolysates and fermentation of resulting pentoses to ethanol. Tappi J 66:102–107

    CAS  Google Scholar 

  • Lee H, James AP, Zahab DM, Mahmourides G, Maleszka R, Schneider H (1986) Mutants of Pachysolen tannophilus with improved production of ethanol D-xylose. Appl Environ Microb 51:1252–1258

    CAS  Google Scholar 

  • Lee H, Atkin AL, Barbosa MFS, Dorscheid DR, Schneider H (1988) Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii. Enzyme Microb Technol 10:81–84

    Article  CAS  Google Scholar 

  • Lohmeier-Vogel EM, Sopher CR, Lee H (1998) Intracellular acidification as a mechanism for the inhibition by acid hydrolysis-derived inhibitors of xylose fermentation by yeasts. J Ind Microb Biotechnol 20:75–81

    Article  CAS  Google Scholar 

  • Modig T, Liden G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    Article  CAS  PubMed  Google Scholar 

  • Mohandas DV, Whelan DR, Panchal CJ (1995) Development of xylose-fermenting yeast for ethanol production at high acetic acid concentrations. Appl Biochem Biotechnol 51:307–318

    Article  Google Scholar 

  • Nigam JN (2001) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microb 90:208–215

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331

    Article  CAS  Google Scholar 

  • Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55

    Article  CAS  PubMed  Google Scholar 

  • Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G (1990) Fermentation of hardwood hemicellulose hydrolysate by Pachysolen tannophilus, Candida shehatae and Pichia stipitis. J Ind Microb Biotechnol 6:157–164

    CAS  Google Scholar 

  • Pereira SR, Portuagal-Nunes DJ, Evtuguin DV, Serafim LS, Xavier A (2013) Advances in ethanol production from hardwood spent sulfite liquors. Process Biochem 48:272–282

    Article  CAS  Google Scholar 

  • Richardson TL, Harner NK, Bajwa PK, Trevors JT, Lee H (2011) Approaches to deal with toxic inhibitors during fermentation of lignocellulosic substrates. In: Zhu JY, Zhang X, Pan XJ (eds) Sustainable production of fuels, chemicals, and fibers from forest biomass, ACS symposium series, vol 1067, Chap. 7. American Chemical Society Publication, Washington, DC, pp 171–202

  • Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92

    Article  CAS  Google Scholar 

  • Slininger PJ, Bothast RJ, Van Cauwenberge JE, Kurtzman CP (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384

    Article  CAS  PubMed  Google Scholar 

  • Slininger PJ, Bothast RJ, Okos MR, Ladisch MR (1985) Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnol Lett 7:431–436

    Article  CAS  Google Scholar 

  • Wedlock DN, James AP, Thornton RJ (1989) Glucose-negative mutants of Pachysolen tannophilus. J Gen Microb 135:2019–2026

    CAS  Google Scholar 

  • Wei P, Li Z, He P, Lin Y, Jiang N (2008) Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance. Biotechnol Appl Biochem 49:113–120

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Wayman M, Parekh SK (1987) Fermentation to ethanol of pentose-containing spent sulfite liquor. Biotechnol Bioeng 29:1144–1150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada through the NSERC Bioconversion Network. We thank Dr. Cletus Kurtzman of USDA ARS Culture Collection (Peoria, Illinois, USA) for providing P. tannophilus NRRL Y2460 (WT) and Frank Giust of Tembec Inc. (Témiscaming, Québec, Canada) for providing the HW SSL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harner, N.K., Bajwa, P.K., Habash, M.B. et al. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid. Antonie van Leeuwenhoek 105, 29–43 (2014). https://doi.org/10.1007/s10482-013-0050-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-013-0050-y

Keywords

Navigation