Skip to main content

Advertisement

Log in

A method to type the potential angucycline producers in actinomycetes isolated from marine sponges

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Angucyclines are aromatic polyketides with antimicrobial, antitumor, antiviral and enzyme inhibition activities. In this study, a new pair of degenerate primers targeting the cyclase genes that are involved in the aromatization of the first and/or second ring of angucycline, were designed and evaluated in a PCR protocol targeting the jadomycin cyclase gene of Streptomyces venezuelae ISP5230. The identity of the target amplicon was confirmed by sequencing. After validation, the primers were used to screen 49 actinomycete isolates from three different marine sponges to identify putative angucycline producers. Seven isolates were positively identified using this method. Sequence analysis of the positive amplicons confirmed their identity as putative angucycline cyclases with sequence highly similar to known angucycline cyclases. Phylogenetic analysis clustered these positives into the angucycline group of cyclases. Furthermore, amplifications of the seven isolates using ketosynthase-specific primers were positive, backing the results using the cyclase primers. Together these results provided strong support for the presence of angucycline biosynthetic genes in these isolates. The specific primer set targeting the cyclase can be used to identify putative angucycline producers among marine actinobacteria, and aid in the discovery of novel angucyclines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bechthold A, Sohng JK, Smith TM, Chu X, Floss HG (1995) Identification of Streptomyces violaceoruber Tu22 genes involved in the biosynthesis of granaticin. Mol Gen Genet 248:610–620

    Article  PubMed  CAS  Google Scholar 

  • Chen YH, Wang CC, Greenwell L, Rix U, Hoffmeister D, Vining LC, Rohr J, Yang KQ (2005) Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase. J Biol Chem 280:22508–22514

    Article  PubMed  CAS  Google Scholar 

  • Chung JY, Fujii I, Harada S, Sankawa U, Ebizuka Y (2002) Expression, purification, and characterization of AknX anthrone oxygenase, which is involved in aklavinone biosynthesis in Streptomyces galilaeus. J Bacteriol 184:6115–6122

    Article  PubMed  CAS  Google Scholar 

  • Doull JL, Ayer SW, Singh AK, Thibault P (1993) Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot 46:869–871

    PubMed  CAS  Google Scholar 

  • Doull JL, Singh AK, Hoare M, Ayer SW (1994) Conditions for the production of jadomycin B by Streptomyces venezuelae ISP 5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 13:120–125

    Article  PubMed  CAS  Google Scholar 

  • Faust B, Hoffmeister D, Weitnauer G, Westrich L, Haag S, Schneider P, Decker H, Kunzel E, Rohr J, Bechthold A (2000) Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tu2717. Microbiology 146:147–154

    PubMed  CAS  Google Scholar 

  • Fenical W, Baden D, Burg M, de Goyet CV, Grimes JD, Katz M, Marcus NH (1999) From monsoons to microbes: understanding the ocean’s role in human health. In: Fenical W (ed) Marine-derived pharmaceuticals and related bioactive compounds. National Academy Press, Washington, pp 71–86

    Google Scholar 

  • Fernández-Moreno MA, Martínez E, Boto L, Hopwood DA, Malpartida F (1992) Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem 267:19278–19290

    PubMed  Google Scholar 

  • Fieseler L, Hentschel U, Grozdanov L, Schirmer A, Wen G, Platzer M, Hrvatin S, Butzke D, Zimmermann K, Piel J (2007) Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol 73:2144–2155

    Article  PubMed  CAS  Google Scholar 

  • Grimm A, Madduri K, Ali A, Hutchinson CR (1994) Characterization of the Streptomyces peucetius ATCC 29050 genes encoding doxorubicin polyketide synthase. Gene 151:1–10

    Article  PubMed  CAS  Google Scholar 

  • Han L, Yang K, Ramalingam E, Mosher RH, Vining LC (1994) Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140:3379–3389

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA (1997) Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  PubMed  CAS  Google Scholar 

  • Jiang SM, Sun W, Chen M, Dai S, Zhang L, Liu Y, Lee KJ, Li X (2007) Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie Van Leeuwenhoek 92:405–416

    Article  PubMed  CAS  Google Scholar 

  • Jiang SM, Li X, Zhang L, Sun W, Dai SK, Xie LW, Liu YH, Lee KJ (2008) Culturable actinobacteria isolated from marine sponge Iotrochota sp. Mar Biol 153:945–952

    Article  CAS  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  PubMed  CAS  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson AD (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Fuerst JA (2006) Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. Environ Microbiol 8:1460–1470

    Article  PubMed  CAS  Google Scholar 

  • Korynevska A, Heffeter P, Matselyukh B, Elbling L, Micksche M, Stoika R, Berger W (2007) Mechanisms underlying the anticancer activities of the angucycline landomycin E. Biochem Pharmacol 74:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Krohn KRJ, Rohr J (1997) Angucyclines: total syntheses, new structures, and biosynthetic studies of an emerging new class of antibiotics. Top Curr Chem 188:127–195

    Article  CAS  Google Scholar 

  • Li X, De Boer SH (1995) Selection of polymerase chain reaction primers from an RNA intergenic spacer region for specific detection of Clavibacter michiganensis subsp. sepedonicus. Phytopathology 85:837–842

    Article  CAS  Google Scholar 

  • Metsa-Ketela M, Salo V, Halo L, Hautala A, Hakala J, Mantsala P, Ylihonko K (1999) An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 180:1–6

    Article  PubMed  CAS  Google Scholar 

  • Metsa-Ketela M, Halo L, Munukka E, Hakala J, Mantsala P, Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl Environ Microbiol 68:4472–4479

    Article  PubMed  CAS  Google Scholar 

  • Metsa-Ketela M, Palmu K, Kunnari T, Ylihonko K, Mantsala P (2003) Engineering anthracycline biosynthesis toward angucyclines. Antimicrob Agents Chemother 47:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie Van Leeuwenhoek 87:29–36

    Article  PubMed  CAS  Google Scholar 

  • Novakova R, Bistakova J, Homerova D, Rezuchova B, Kormanec J (2002) Cloning and characterization of a polyketide synthase gene cluster involved in biosynthesis of a proposed angucycline-like polyketide auricin in Streptomyces aureofaciens CCM 3239. Gene 297:197–208

    Article  PubMed  CAS  Google Scholar 

  • Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227

    Article  PubMed  CAS  Google Scholar 

  • Räty K, Kantola J, Hautala A, Hakala J, Ylihonko K, Mäntsälä P (2002) Cloning and characterization of Streptomyces galilaeus aclacinomycins polyketide synthase (PKS) cluster. Gene 293:112–115

    Article  Google Scholar 

  • Ridley CP, Lee HY, Khosla C (2008) Evolution of polyketide synthases in bacteria. Proc Natl Acad Sci USA 105:4595–4600

    Article  PubMed  CAS  Google Scholar 

  • Rohr JTR, Thiericke R (1992) Angucycline group antibiotics. Nat Prod Rep 9:103–137

    Article  PubMed  CAS  Google Scholar 

  • Schneider G (2005) Enzymes in the biosynthesis of aromatic polyketide antibiotics. Curr Opin Struct Biol 15:629–636

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Jiang SM, Dai SK, Wang GH, Wu HB, Li X (2010) Culture-dependent and culture-independent diversity of actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea. Antonie van Leeuwenhoek 98:65–75

    Article  PubMed  CAS  Google Scholar 

  • Tamura KDJ, Nei M, Kumar S (2007) MEGA4 Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Trefzer A, Pelzer S, Schimana J, Stockert S, Bihlmaier S, Fiedler C, Welzel HP, Vente KA, Bechthold A (2002) Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob Agents Chemother 46:1174–1182

    Article  PubMed  CAS  Google Scholar 

  • Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119:1–11

    Article  CAS  Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Ecol 30:301–314

    Article  Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  PubMed  CAS  Google Scholar 

  • Wawrik B, Kerkhof L, Zylstra GJ, Kukor JJ (2005) Identification of unique type II polyketide synthase genes in soil. Appl Environ Microbiol 71:2232–2238

    Article  PubMed  CAS  Google Scholar 

  • Wawrik B, Kutliev D, Abdivasievna UA, Kukor JJ, Zylstra GJ, Kerkhof L (2007) Biogeography of actinomycete communities and type II polyketide synthase genes in soils collected in New Jersey and Central Asia. Appl Environ Microbiol 73:2982–2989

    Article  PubMed  CAS  Google Scholar 

  • Westrich L, Domann S, Faust B, Bedford D, Hopwood DA, Bechthold A (1999) Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170:381–387

    Article  PubMed  CAS  Google Scholar 

  • Yang KQ, Han L, Vining LC (1995) Regulation of jadomycin-B production in Streptomyces venezuelae Isp5230—involvement of a repressor gene, Jadr(2). J Bacteriol 177:6111–6117

    PubMed  CAS  Google Scholar 

  • Ylihonko K, Hakala J, Kunnari T, Mantsala P (1996) Production of hybrid anthracycline antibiotics by heterologous expression of Streptomyces nogalater nogalamycin biosynthesis genes. Microbiology 142:1965–1972

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Lee YK, Zhang W, Lee HK (2006) Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie Van Leeuwenhoek 90:159–169

    Article  PubMed  CAS  Google Scholar 

  • Zheng JT, Wang SL, Yang KQ (2007) Engineering a regulatory region of jadomycin gene cluster to improve jadomycin B production in Streptomyces venezuelae. Appl Microbiol Biotechnol 76:883–888

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the State Principal and Basic Research and Development Program of the Ministry of Sciences and Technology of China (2010CB833801-3) and Provincial Collaborative Foundation Project of Guangdong (9351007002000001, 2008A030203004). We also thank the financial support of the China Ocean Mineral Resources R&D Association Project (DYXM115-02) and the Open Project Program (LMB091001) of the Key Laboratory of Marine Bio-resources Sustainable Utilization, SCSIO-CAS. Many thanks are given to Dr Ravi Kumar for critical reading of this manuscript and Chen W. Z. for identifying the marine sponge.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houbo Wu or Xiang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, Y., Wu, H., Xie, L. et al. A method to type the potential angucycline producers in actinomycetes isolated from marine sponges. Antonie van Leeuwenhoek 99, 807–815 (2011). https://doi.org/10.1007/s10482-011-9554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9554-5

Keywords

Navigation