Skip to main content

Advertisement

Log in

Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the mode of action of BLS P34, a bacteriocin-like substance (BLS) produced by a novel Bacillus sp. strain P34 isolated from the Amazon basin. The effect of the BLS was tested against Listeria monocytogenes, showing a bactericidal effect at 200 AU (activity units) ml−1, while no inhibition of spore outgrowth of Bacillus cereus was observed with a dose of 1,600 AU ml−1. Growth of Escherichia coli and Salmonella Enteritidis was inhibited, but only when the chelating agent EDTA was co-added with the BLS. The effect of BLS P34 on L. monocytogenes was also investigated by Fourier transform infrared spectroscopy. Treated cells showed an important frequency increase in 1,452 and 1,397 cm−1 and decrease in 1,217 and 1,058 cm−1, corresponding assignments of fatty acids and phospholipids. Transmission electron microscopy showed damaged cell envelope and loss of protoplasmic material. BLS P34 was bactericidal to Gram-positive, and also showed inhibitory effect against Gram-negative bacteria. There is evidence that its mode of action corresponds to that of a membrane-active substance. The knowledge about the mode of action of this BLS is essential to determine its effective application as an antimicrobial agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abriouel H, Maqueda M, Galvez A, Martinez-Bueno M, Valdivia E (2002) Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48. Appl Environ Microbiol 68:1473–1477

    Article  PubMed  CAS  Google Scholar 

  • Ahern M, Verschueren S, van Sinderen D (2003) Isolation and characterization of a novel bacteriocin produced by Bacillus thuringiensis strain B439. FEMS Microbiol Lett 220:127–131

    Article  PubMed  CAS  Google Scholar 

  • Atrih A, Rekhif N, Moir AJG, Lebrihi A, Lefebvre G (2001) Mode of action, purification and amino acid sequence of plantaricin C19 an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. Int J Food Microbiol 68:93–104

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  PubMed  CAS  Google Scholar 

  • Bierbaum G, Sahl HG (1987) Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J Bacteriol 169:5452–5458

    PubMed  CAS  Google Scholar 

  • Bizani D, Motta AS, Morrissy JAC, Terra MST, Souto AA, Brandelli A (2005) Antibacterial activity of cerein 8A a bacteriocin-like peptide produced by Bacillus cereus. Int Microbiol 8:125–131

    PubMed  CAS  Google Scholar 

  • Blondelle SE, Lohner K, Aguilar MI (1999) Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. Biochim Biophys Acta 1462:89–108

    Article  PubMed  CAS  Google Scholar 

  • Brötz H, Sahl HG (2000) New insights into the mechanism of action of lantibiotics-diverse biological effects by binding to the same molecular target. J Antimicrob Chemother 46:1–6

    Article  PubMed  Google Scholar 

  • Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed  Google Scholar 

  • Carrilo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611:91–97

    Article  Google Scholar 

  • Casal HL, Mantsch HH (1984) Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta 774:381–401

    Google Scholar 

  • Casal HL, Mantsch HH, Hauser H (1987) Infrared studies of fully hydrated saturated phosphatidylserine bilayers. Effect of Li+ and Ca2+. Biochemistry 26:4408–4416

    Article  PubMed  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  PubMed  CAS  Google Scholar 

  • Cutter CN, Siragusa GR (1995) Population reductions of gram-negative pathogens following treatments with nisin and chelators under various conditions. J Food Prot 58:977–983

    CAS  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Lactic acid bacteria and bacteriocins: their pratical importance. In: de Vuyst L, Vandamme EJ (eds) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie, London, pp 1–11

    Google Scholar 

  • Eckner FK (1992) Bacteriocins and food application. Dairy Food Environ Sanit 12:204–209

    Google Scholar 

  • Faille C, Membre JM, Kubaczka M, Gavini F (2002) Altered ability of Bacillus cereus spores to grow under unfavorable condition (presence of nisin, low temperature, acidic pH, presence of NaCl) following heat treatment during sporulation. J Food Prot 65:1930–1936

    PubMed  Google Scholar 

  • Fernandéz-Lopes S, Kim HS, Choi EC, Delgado M, Granja JR, Khasanov A, Kraehenbuehl A., Long G, Weinberger DA, Wilcoxen KM, Ghadiri MR (2001) Antibacterial agents based on the cyclic D,L-α-peptide architecture. Nature 412:452–455

    Article  Google Scholar 

  • Héchard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557

    Article  PubMed  Google Scholar 

  • Heerklotz H, Wieprecht T, Seelig J (2004) Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. J Phys Chem B 108:4909–4915

    Article  CAS  Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171–200

    PubMed  CAS  Google Scholar 

  • Kemper MA, Urrotia MM, Beveridge TJ, Koch AL, Doyle RJ (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol 175:5690–5696

    PubMed  CAS  Google Scholar 

  • Liu W, Hansen JN (1993) The antimicrobial effect of a structural variant of subtilin against outgrowing Bacillus cereus T spores and vegetative cells occurs by different mechanism. Appl Environ Microbiol 59:648–651

    PubMed  CAS  Google Scholar 

  • Maquelin K, Kirschner C, Choo-Smith LP, van de Braak N, Endtz HP, Naumann D, Puppels GJ (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51:255–271

    Article  PubMed  CAS  Google Scholar 

  • Mayr-Harting A, Hedjes AJ, Berkeley CW (1972) Methods for studying bacteriocins. In: Norris JR, Ribbons D (eds) Methods in microbiology. Academic Press, New York, pp 315–412

    Google Scholar 

  • Montville TJ, Bruno MEC (1994) Evidence that dissipation of proton motive force is a common mechanism of action for bateriocins and other antimicrobial proteins. Int J Food Microbiol 24:53–74

    Article  PubMed  CAS  Google Scholar 

  • Motta AS, Brandelli A (2002) Characterization of an antibacterial peptide produced by Brevibacterium linens. J Appl Microbiol 92:63–71

    Article  PubMed  CAS  Google Scholar 

  • Motta AS, Cladera-Olivera F, Brandelli A (2004) Screening for antimicrobial activity among bacteria isolated from Amazon basin. Braz J Microbiol 35:307–310

    Article  CAS  Google Scholar 

  • Motta AS, Cannavan, FS, Tsai SM, Brandelli A (2007a) Characterization of a broad range antibacterial substance from a new Bacillus species isolated from Amazon basin. Arch Microbiol 188:367–375

    Article  PubMed  Google Scholar 

  • Motta AS, Lorenzini DM, Brandelli A (2007b) Purification and partial characterization of an antimicrobial peptide produced by a novel Bacillus sp. isolated from Amazon basin. Curr Microbiol 54:282–286

    Article  PubMed  CAS  Google Scholar 

  • Naumann D (2000) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 102–131

    Google Scholar 

  • Nes IF, Diep DB, Havarstein LS, Brurberg MB, Eijsink V, Holo H (1996) Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70:113–128

    Article  PubMed  CAS  Google Scholar 

  • Ortiz A, Aranda FJ, Villalaín J, San Martin C, Micol V, Gómez-Fernández JC (1992) 1,2-Dioleoylglycerol promotes calcium-induced fusion in phospholipid vesicles. Chem Phys Lipids 62:215–224

    Article  PubMed  CAS  Google Scholar 

  • Oscáriz JC, Pisabarro AG (2000) Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J Appl Microbiol 89:361–369

    Article  PubMed  Google Scholar 

  • O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocin producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604

    Article  PubMed  CAS  Google Scholar 

  • Paik HD, Bae SS, Park SH, Pan JG (1997) Identification and partial characterization of tochicin, a bacteriocin produced by Bacillus thurigiensis subsp. tochigiensis. J Ind Microbiol Biotechnol 19:294–298

    Article  PubMed  CAS  Google Scholar 

  • Pattnaik P, Kaushik JK, Grover S, Batish VK (2001) Purification and characterization of a bacteriocin-like compound (lichenin) produced anaerobically by Bacillus licheniformes isolated from water buffalo. J Appl Microbiol 91:636–645

    Article  PubMed  CAS  Google Scholar 

  • Preisner O, Lopes JA, Guiomar R, Machado J, Menezes JC (2007) Fourier transform infrared (FT-IR) spectroscopy: towards a reference method for bacteria discrimination. Anal Bioanal Chem 387:1739–1748

    Article  PubMed  CAS  Google Scholar 

  • Roberts CM, Hoover DG (1996) Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure, heat, acidity and nisin. J Appl Bacteriol 81:363–369

    CAS  Google Scholar 

  • Rodriguez MPQ (2000) Fourier transform infrared (FTIR) technology for the identification of microorganisms. Clin Microbiol Newsl 22:57–61

    Article  Google Scholar 

  • Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl Environ Microbiol 57:3613–3615

    PubMed  CAS  Google Scholar 

  • Suci PA, Vrany JD, Mittelman MW (1998) Investigation of interactions between antimicrobial agents and bacterial biofilms using attenuated total reflection Fourier transform infrared spectroscopy. Biomaterials 19:327–339

    Article  PubMed  CAS  Google Scholar 

  • Zheng G, Slavic MF (1999) Isolation, purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Microbiol 28:363–367

    Article  PubMed  CAS  Google Scholar 

  • Zuber P, Nakano MM, Marahiel MA (1993) Peptide antibiotics. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington, pp 897–916

    Google Scholar 

Download references

Acknowledgments

The authors thank Moema Queiroz from the Centro de Microscopia Eletrônica (CME, UFRGS) for her technical assistance. This work received financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motta, A.S., Flores, F.S., Souto, A.A. et al. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie van Leeuwenhoek 93, 275–284 (2008). https://doi.org/10.1007/s10482-007-9202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-007-9202-2

Keywords