Skip to main content

Advertisement

Log in

New PCR ribotypes of Clostridium difficile detected in children in Brazil

Prevalent types of Clostridium difficile in Brazil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A total of 35 Brazilian isolates of Clostridium difficile from faecal stools and four isolates from hospital environments were analyzed by PCR ribotyping. A whole cell protein profile (as an alternative for serogrouping), in vitro toxin production and susceptibility to vancomycin, metronidazole and clindamycin were also investigated. All strains were typeable by both phenotypic and genotypic methods, and a total of 13 different PCR ribotypes were identified, of which seven (132, 133, 134, 135, 136, 142 and 143) were considered new types and accounted for 78.5% of all samples evaluated (including hospital environments). A non-toxigenic C. difficile PCR ribotype 133 was detected in all children groups examined (inpatients, outpatients and healthy children), whilst toxigenic PCR ribotypes 015, 131, 134 and 135 were associated mostly with symptomatic children. Serogroups G and D were disseminated both in patients from the community and from the pediatric hospital, with group G prevalent among outpatient children. All strains were susceptible to vancomycin and metronidazole but high levels of resistance to clindamycin were found, especially among serogroups G and D. Co-existence of different ribotypes and serogroups in the same individual was observed. The new seven ribotypes found in this investigation may represent strains characteristic of this region of Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAD:

Antibiotic-associated diarrhea

PMC:

Pseudomembranous colitis

PRAS:

Pre-reduced Anaerobically Sterilized

References

  • Al-Barrak A, Embil J, Dick B et al (1999) An outbreak of toxin A negative, toxin B positive Clostridium difficile-associated diarrhea in a Canadian tertiary-care hospital. Canada Communicable Dis Rep 25:1–3

    Google Scholar 

  • Antunes ENF, Ferreira EO, Vallim DC et al (2002) Pattern III Non-toxigenic Bacteroides fragilis (NTBF) Strains in Brazil. Anaerobe 8:17–22

    Article  CAS  Google Scholar 

  • Al Saif N, Brazier JS (1996) The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol 45:133–137

    PubMed  CAS  Google Scholar 

  • Bowman RA, Riley TV (1986) Isolation of Clostridium difficile from stored specimens and comparative susceptibility of various tissues culture cell lines to cytotoxin. FEMS Microbiol Lett 34:31–35

    Article  CAS  Google Scholar 

  • Cerquetti M, Luzzi I, Caprioli A et al (1995) Role of Clostridium difficile in childhood diarrhea. Pediatr Infect Dis J 14:598–603

    Article  PubMed  CAS  Google Scholar 

  • Delmée M, Laroche Y, Avesani V et al (1986) Comparison of serogrouping and polyacrylamide gel electrophoresis for typing Clostridium difficile. J Clin Microbiol 24:991–994

    PubMed  Google Scholar 

  • Depitre CM, Delmée M, Avesani V et al (1993) Serogroup F strains of Clostridium difficile produce toxin B but not toxin A. J Med Microbiol 38:434–441

    PubMed  CAS  Google Scholar 

  • Farrell RJ, La Mont JT (2000) Pathogenesis and clinical manifestations of Clostridium difficile diarrhea and colitis. Curr Top Microbiol Immunol 250:109–125

    PubMed  CAS  Google Scholar 

  • Ferroni A, Merckx J, Ancelle T et al (1997) Nosocomial outbreak of Clostridium difficile diarrhea in a pediatric service. Eur J Clin Microbiol Infect Dis 16:928–933

    Article  PubMed  CAS  Google Scholar 

  • Harmon T, Burkhart G, Applebaum H (1992) Perforated pseudomembranous colitis in the breast-fed infant. J Pediatr Surg 27:744–746

    Article  PubMed  CAS  Google Scholar 

  • Johnson S, Sambol SP, Brazier JP et al (2003) International typing study of toxin A-negative, toxin B-positive Clostridium difficile variants. J Clin Microbiol 41:1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Kato H, Kita H, Karasawa T et al (2001) Colonization and transmission of Clostridium difficile in healthy individuals examined by PCR ribotyping and pulsed-field gel electrophoresis. J Med Microbiol 50:720–727

    PubMed  CAS  Google Scholar 

  • Kim K, Dupont MD, Pickering LK (1983) Outbreaks of diarrhea associated with Clostridium difficile and its toxin in day-care centers: evidence of person-to-person spread. J Pediatrics 102:376–382

    Article  CAS  Google Scholar 

  • Lawson ME, Welch A (1993) In-vitro and in-vivo characterization of resistance to colonization with Clostridium difficile. J Med Microbiol 38:103–108

    Google Scholar 

  • Loo VG, Poirier L, Miller MA et al (2005) A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353(23):2442–2449

    Article  PubMed  CAS  Google Scholar 

  • Lyerly DM, Saum KE, Macdonald DK et al (1985) Effects of Clostiridum difficile toxins gives intragastrically to animals. Infect Immun 47:349–352

    PubMed  CAS  Google Scholar 

  • Lyerly DM, Barroso LA, Wilkins TD et al (1992) Characterization of a toxin A-negative, toxin B-positive of Clostridium difficile. Infect Immun 60:4633–4639

    PubMed  CAS  Google Scholar 

  • McDonald IC, Killgore GE, Thompson A et al (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353(23):2433–2441

    Article  PubMed  CAS  Google Scholar 

  • McFarland LV, Brandmaker SA, Guandalini S (2000) Pediatric Clostridium difficile: A phantom menace or clinical reality? J Ped Gastroent Nut 31:220–231

    Article  CAS  Google Scholar 

  • McGowan KL, Kader HA (1999) Clostridium difficile infection in children. Clin Microbiol Newsletter 21:49–53

    Article  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2004) Methods for antimicrobial susceptibility testing of anerobic bacteria–6th edition: approved standard M11-A6. NCCLS, Villanova, PA

  • Perelle S, Gilbert M, Bourlioux P et al (1997) Production of a complete binary toxin (actin-specific ADP- ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    PubMed  CAS  Google Scholar 

  • Pinto LJF, Alcides APP, Ferreira EO et al (2003) Incidence and importance of Clostridium difficile in pediatric diarrhoea in Brazil. J Med Microbiol 52:1095–1099

    Article  PubMed  CAS  Google Scholar 

  • Qualman SJ, Petric M, Karmali MA et al (1990) Clostridium difficile invasion and toxin circulation in fatal pediatric pseudomembranous colitis. Am J Clin Pathol 94:410–416

    PubMed  CAS  Google Scholar 

  • Stille CJ, Andrade SE, Huang SS et al (2004) Increased use of second-generation macrolide antibiotics for children in nine health plans in the United States. Pediatrics 114 (5):1206–1211

    Article  PubMed  Google Scholar 

  • Stubbs SLJ, Brazier JS, O’Neill GL et al (1999) PCR targeted to the 16S-23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463

    PubMed  CAS  Google Scholar 

  • Stubbs S, Rupnik M, Gilbert M et al (2000) Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 186(2):307–312

    Article  PubMed  CAS  Google Scholar 

  • Sumannen P, Baron EJ, Citron DM et al (1993) Wadsworth Anaerobic bacteriology Manual 5th edn. Wadsworth Health Science, Belmont

    Google Scholar 

  • Torres JF (1991) Purification and characterization of toxin B from a strain of Clostridium difficile that does not produce toxin A. J Med Microbiol 35:40–44

    Article  PubMed  CAS  Google Scholar 

  • Vallim DC, Oliveira ICM, Antunes ENF et al (2002) Evaluation of genetic relatedness of Bacteroides fragilis strains isolated from different Sources by AP-PCR and pulsed-field gel electrophoresis assays. Anaerobe 8:192–199

    Article  CAS  Google Scholar 

  • van den Berg RJ, Ameen HAA, Furusawa T et al (2005) Coexistence of multiple PCR-ribotype strains of Clostridium difficile in faecal samples limits epidemiological studies. J Med Microbiol 54:173–179

    Article  PubMed  CAS  Google Scholar 

  • Warny M, Pepin J, Fang A et al (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084

    Article  PubMed  CAS  Google Scholar 

  • Wilson KH (1993) The microecology of Clostridium difficile. Clin Infect Dis 16:S214–S218

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Joaquim Santos Filho for technical assistance, Dr. Claudia Mendonça, Dr. Rafael Duarte and Prof. Dr. Lucia Teixeira (UFRJ) for SDS-PAGE analysis system assistance; Dr. Michel Delmée (Unité de Microbiologie - Université Catholique de Louvain, Bruxelles, Belgium) for reference strains of serogrouping and to medical staff of Pediatric Institute Prof. Martagão Gesteira from UFRJ. This work was supported by grants from the following Institutions: CNPq, Pronex, FUJB and Faperj.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina M. C. P. Domingues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcides, A.P.P., Brazier, J.S., Pinto, L.J.F. et al. New PCR ribotypes of Clostridium difficile detected in children in Brazil. Antonie van Leeuwenhoek 92, 53–59 (2007). https://doi.org/10.1007/s10482-006-9134-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9134-2

Keywords

Navigation