Skip to main content
Log in

An Evaluation of Soil Colonisation Potential of Selected Fungi and their Production of Ligninolytic Enzymes for Use in Soil Bioremediation Applications

  • Orginal paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Initially sixteen fungi were screened for potential ligninolytic activity using decolourisation of a polymeric dye Poly R-478. From this, four fungi were selected, Trametes versicolor, Pleurotus ostreatus, Collybia sp., and an isolate (identified as Rhizoctonia solani) isolated from a grassland soil. Differences in the ligninolytic enzyme profiles of each of the fungi were observed. All of the four fungi tested produced MnP and laccase while the Collybia sp. and R. solani produced LiP in addition. Enzyme activity levels also varied greatly over the 21 days of testing with T. versicolor producing levels of MnP and laccase three to four times greater than the other fungi. The four fungi were then tested for their ability to colonise sand, peat (forest) and basalt and marl mixed till (field) soils through visual measurement and biomass detection in soil microcosms. Trametes versicolor and the Collybia sp. failed to grow in any of the non-sterilised soils whereas the R. solani and P. ostreatus isolates grew satisfactorily. Primers were␣designed to detect MnP and laccase genes in P.␣ostreatus and RTPCR was used to detect that these genes are expressed in forest and field soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson BE, Tornberg K, Henrysson T, Olsson S (2001) Three-dimensional outgrowth of a wood-rotting fungus added to a contaminated soil from a former gasworks site. Bioresource Technol 78:37–45

    Article  CAS  Google Scholar 

  • Baldrian P, Der Wiesche C, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 64:2471–2478

    Article  Google Scholar 

  • Baldrain P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74

    Article  Google Scholar 

  • Barr DP, Aust SD (1992) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28:78–87

    Article  Google Scholar 

  • Bogan B, Schoenike B, Lamar R, Cullen D (1996) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 62:2381–2386

    PubMed  CAS  Google Scholar 

  • Breen A, Singleton F (1999) Fungi in lignocellulose breakdown and biopulping. Curr Opin Biotechnol 10:252–258

    Article  PubMed  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  PubMed  CAS  Google Scholar 

  • Carlile MJ, Watkinson SC and Gooday G (1994) The Fungi. Academic Press, New York, London

    Google Scholar 

  • Chiu SW, Ching ML, Fong KL, Moore D (1998) Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol Res 102:1553–1562

    Article  CAS  Google Scholar 

  • Collins PJ, Dobson DW (1995) PCR amplification of lignin peroxidase genes in white rot fungi. Biotechnol Tech 9:917–920

    Article  CAS  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbiol 72:28–36

    Article  PubMed  CAS  Google Scholar 

  • Dawson RM, Elliot WH, Jones KM (1986) Data for biochemical research, 3rd edn. Oxford Science, pp 426–441

  • de Boer W, Verheggen P, Gunnewiek PJAK, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69:835–844

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specifity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Ha HC, Honda Y, Watanabe T, Kuwahara M (2001) Production of manganese peroxidase by pellet culture of the lignin-degrading basidiomycete, Pleurotus ostreatus. Appl Microbiol Biotechnol 55:704–711

    Article  PubMed  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka A, Steffen KT, Toumela M, Hofrichter M (2001) Fungal processes for bioremediation. Proceedings from the first European Bioremediation conference. Chania, Crete, pp 353–356

  • Ho WC, Ko WH (1986) Microbiostasis by nutrient deficiency shown in natural and synthetic soils. J Gen Microbiol 132:2807–2815

    Google Scholar 

  • Korniłłowicz-Kowalska T, Wrzosek G, Ginalska G, Iglik H, Bancerz R (2006) Identification and application of a new fungal strain of Bjerkandera adusta R59 in decolorization␣of daunomycin wastes. Enzyme Microbial Technol 38:583–590

    Article  CAS  Google Scholar 

  • Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43:207–215

    Article  PubMed  CAS  Google Scholar 

  • Lang E, Eller G, Zadrazil F (1997) Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb Ecol 34:1–10

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo M, Moldes D, Rodriguez Couto S, Sanroman A (2002) Improving laccase production by employing different lignocellulosic wastes in submerged cultures of Trametes versicolor. Bioresource Technol 82:109–113

    Article  CAS  Google Scholar 

  • MacNish G (1986) Rhizoctonia patch disease of cereals. J Agri W Aust 3:91–95

    Google Scholar 

  • Novotny C, Erbanova P, Sasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative␣enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10:159–168

    Article  PubMed  CAS  Google Scholar 

  • O’Brien PA, Zamani M (2003) Production of pectic enzymes by barepatch isolates of Rhizoctonia solani AG 8. Aust Pl Path 32:65–72

    Article  CAS  Google Scholar 

  • Paszczynski A, Crawford RL, Huynh VB (1988) Manganese peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 161:264–270

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  PubMed  CAS  Google Scholar 

  • Rigas F, Dritsa V, Marchant R, Papadopoulou K, Avramides EJ, Hatzianestis I (2005) Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ Int. 31:191–196

    Article  PubMed  CAS  Google Scholar 

  • Rogalski J, Lundell TK, Leonowicz A, Hatakka AI (1991) Influence of aromatic compounds and lignin on production of ligninolytic enzymes of Phlebia radiata. Phytochemistry 30:2869–2872

    Article  CAS  Google Scholar 

  • Scheel T, Hofer M, Ludwig S, Holker U (2000) Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds. Appl Microbiol Biotechnol 54:686–691

    Article  PubMed  CAS  Google Scholar 

  • Soares A, Guieysse B, Mattiasson B (2006) Influence of agitation on the removal of nonylphenol by the white-rot fungi Trametes versicolor and Bjerkandera sp. BOL 13. Biotechnol Lett 28:139–143

    Article  PubMed  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002a) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002b) Degradation of humic acids by the litter decomposing basidiomycete Collybia dryophila. Appl Environ Microbiol 68:3442–3448

    Article  CAS  Google Scholar 

  • Szklarz GD, Antibus RK, Sinsabaugh RL, Linkins AE (1989) Production of phenol oxidases and peroxidases by wood rotting fungi. Mycologia 8:234–240

    Article  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidases of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    CAS  Google Scholar 

  • van Straalen NM (2002) Assessment of soil contamination – a functional perspective. Biodegradation 13:41–52

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out with the aid of a Department of Employment and Learning (DEL) grant. We would like to thank the National Technical University of Athens for the supply of fungal strains and are grateful to the researchers who provided input on DNA sequencing and enzyme activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Marchant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McErlean, C., Marchant, R. & Banat, I.M. An Evaluation of Soil Colonisation Potential of Selected Fungi and their Production of Ligninolytic Enzymes for Use in Soil Bioremediation Applications. Antonie Van Leeuwenhoek 90, 147–158 (2006). https://doi.org/10.1007/s10482-006-9069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-006-9069-7

Keywords

Navigation