Skip to main content
Log in

An interactive approach for biobjective integer programs under quasiconvex preference functions

  • Original Paper
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

We develop an interactive algorithm for biobjective integer programs that finds the most preferred solution of a decision maker whose preferences are consistent with a quasiconvex preference function to be minimized. During the algorithm, preference information is elicited from the decision maker. Based on this preference information and the properties of the underlying quasiconvex preference function, the algorithm reduces the search region and converges to the most preferred solution progressively. Finding the most preferred solution requires searching both supported and unsupported nondominated points, where the latter is harder. We develop theory to further restrict the region where unsupported nondominated points may lie. We demonstrate the algorithm on the generalized biobjective traveling salesperson problem where there are multiple efficient edges between node pairs and show its performance on a number of randomly generated instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bérubé, J. F., Gendreau, M., & Potvin, J. Y. (2009). An exact \(\upvarepsilon \)-constraint method for Bi-objective combinatorial optimization problems—Application to the traveling salesman problem with profits. European Journal of Operational Research, 194(1), 39–50.

    Article  Google Scholar 

  • Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: Theory and methodology. New York: North-Holland.

    Google Scholar 

  • Ehrgott, M. (2005). Multicriteria optimization (Vol. 2). Berlin: Springer.

    Google Scholar 

  • Foo, J. L., Knutzon, J., Kalivarapu, V., Olver, J., & Winer, E. (2009). Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization. Journal of Aerospace Computing, Information and Communication, 6(4), 271–290.

    Article  Google Scholar 

  • Hansen, M. P. (2000). Use of substitute scalarizing functions to guide a local search based heuristic: The case of moTSP. Journal of Heuristics, 6, 419–431.

    Article  Google Scholar 

  • Jaszkiewicz, A., & Zielniewicz, P. (2009). Pareto memetic algorithm with path relinking for bi-objective traveling salesperson problem. European Journal of Operational Research, 193(3), 885–890.

    Article  Google Scholar 

  • Jozefowiez, N., Glover, F., & Laguna, M. (2008). Multi-objective meta-heuristics for the traveling salesman problem with profits. Journal of Mathematical Modelling and Algorithms, 7(2), 177–195.

    Article  Google Scholar 

  • Karademir, S. (2008). A genetic algorithm for the biobjective traveling salesman problem with profits. M.S. thesis, Department of Industrial Engineering, Middle East Technical University.

  • Korhonen, P., Wallenius, J., & Zionts, S. (1984). Solving the discrete multiple criteria problem using convex cones. Management Science, 30(1), 1336–1345.

    Article  Google Scholar 

  • Köksalan, M. M., & Sagala, P. N. S. (1995). Interactive approaches for discrete alternative multiple criteria decision making with monotone utility functions. Management Science, 41, 1158–1171.

    Article  Google Scholar 

  • Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(2), 231–247.

    Article  Google Scholar 

  • Lokman, B., Köksalan, M., Korhonen, P. J., & Wallenius, J. (2014). An interactive algorithm to find the most preferred solution of multi-objective integer programs. Annals of operations research. doi:10.1007/s10479-014-1545-2

  • Lust, T., & Teghem, J. (2010). The multiobjective traveling salesman problem: A survey and a new approach. Advances in Multi-Objective Nature Inspired Computing Studies in Computational Intelligence, 272, 119–141.

    Google Scholar 

  • Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the Association for Computing Machinery, 7(4), 326–329.

    Article  Google Scholar 

  • Müller-Hannemann, M., & Weihe, K. (2006). On the cardinality of the Pareto set in bicriteria shortest path problems. Annals of Operations Research, 147, 269–286.

    Article  Google Scholar 

  • Özpeynirci, Ö., & Köksalan, M. (2009). Multiobjective traveling salesperson problem on halin graphs. European Journal of Operational Research, 196, 155–161.

    Article  Google Scholar 

  • Özpeynirci, Ö., & Köksalan, M. (2010). Pyramidal tours and multiple objectives. Journal of Global Optimization, 48(4), 569–582.

    Article  Google Scholar 

  • Paquete, L., & Stützle, T. (2003). A two-phase local search for the biobjective traveling salesman problem. Proceedings of the 2nd international conference on evolutionary multi-criterion optimization (EMO 2003), LNCS 2632, (pp. 479–493). New York: Springer.

  • Przybylski, A., Gandibleux, X., & Ehrgott, M. (2008). Two phase algorithms for the Bi-objective assignment problem. European Journal of Operations Research, 185, 509–533.

    Article  Google Scholar 

  • Ramesh, R., Karwan, M. H., & Zionts, S. (1990). An interactive method for bicriteria integer programming. IEEE Transactions on Systems, Man, and Cybernetics, 20, 395–403.

    Article  Google Scholar 

  • Steuer, R. E. (1986). Multiple criteria optimization: Theory, computation, and application. New York: Wiley.

    Google Scholar 

  • Tezcaner, D., & Köksalan, M. (2011). An interactive algorithm for multi-objective route planning. Journal of Optimization Theory and Applications, 150(2), 379–394.

    Article  Google Scholar 

  • Tuyttens, D., Teghem, J., Fortemps, Ph, & Van Nieuwenhuyse, K. (2000). Performance of the MOSA method for the bicriteria assignment problem. Journal of Heuristics, 6, 295–310.

    Article  Google Scholar 

  • Waldock, A., & Corne, D. W. (2012). Exploiting prior information in multi-objective route planning. Parallel Problem Solving from Nature XII Lecture Notes in Computer Science, 7492, 11–21.

    Article  Google Scholar 

  • Wu, P. P., Campbell, D., & Merz, T. (2009). On-board multi-objective mission planning for unmanned aerial vehicles. Aerospace conference IEEE.

  • Zheng, C., Ding, M., & Zhou, C. (2003). Real-time route planning for unmanned air vehicle with an evolutionary algorithm. International Journal of Pattern Recognition and Artificial Intelligence, 17(1), 68–81.

    Article  Google Scholar 

  • Zionts, S. (1981). A multiple criteria method for choosing among discrete alternatives. European Journal of Operational Research, 7(1), 143–147.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diclehan Tezcaner Öztürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tezcaner Öztürk, D., Köksalan, M. An interactive approach for biobjective integer programs under quasiconvex preference functions. Ann Oper Res 244, 677–696 (2016). https://doi.org/10.1007/s10479-016-2149-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2149-9

Keywords

Navigation