Skip to main content
Log in

On discrete optimization with ordering

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper studies discrete optimization problems with ordering requirements. These problems are formulated on general discrete sets in which there exists an ordering on their elements together with a cost function that evaluates each element of a given subset depending on its ordering relative to the remaining elements in the set. It is proven that ordered sequences over the original ground set define an independence system. The simplest such ordering problem, that consists of finding the ordered sequence of maximum weight, and its restriction to sets of a fixed cardinality are studied. In both cases, the polyhedral structure of the corresponding feasible sets is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Averbakh, I. (2001). On the complexity of a class of combinatorial optimization problems with uncertainty. Mathematical Programming, 90, 263–272.

    Article  Google Scholar 

  • Averbakh, I., Berman, O., & Punnen, A. P. (1995). Constrained matroidal bottleneck problems. Discrete Applied Mathematics, 63(3), 201–214.

    Article  Google Scholar 

  • Balas, E., & Padberg, M. W. (1972). On the set-covering problem. Operations Research, 20, 1152–1161.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2003). Robust discrete optimization and networks flows. Mathematical Programming Series B, 98, 49–71.

    Article  Google Scholar 

  • Boland, N., Domínguez-Marín, P., Nickel, S., & Puerto, J. (2006). Exact procedures for solving the discrete ordered median problem. Computers & Operations Research, 33, 3270–3300.

    Article  Google Scholar 

  • Boyd, E. A. (1993). Polyhedral results for the precedence-constrained knapsack problem. Discrete Applied Mathematics, 41(3), 185–201.

    Article  Google Scholar 

  • Breuer, M. A. (1970). Simplification of the covering problem with application to Boolean expressions. Journal of the Association for Computing Machinery, 17, 166–181.

    Article  Google Scholar 

  • Calvete, H., & Mateo, P. M. (1998). Lexicographic optimization in generalized network flow problems. Journal of the Operational Research Society, 49(2), 519–529.

    Google Scholar 

  • Christofides, N., & Korman, S. (1974–1975). A computational survey of methods for the set covering problem. Management Science, 21(5), 591–599.

    Article  Google Scholar 

  • Conde, E. (2004). An improved algorithm for selecting p items with uncertain returns according to the minmax-regret criterion. Mathematical Programming, 100, 345–353.

    Article  Google Scholar 

  • Della Croce, F., Paschos, V. Th., & Tsoukias, A. (1999). An improved general procedure for lexicographic bottleneck problems. Operations Research Letters, 24, 187–194.

    Article  Google Scholar 

  • Espejo, I., Marin, A., Puerto, J., & Rodríguez-Chía, A. (2009). A comparison of formulations and solution methods for the minimum-envy location problem. Computers & Operations Research, 36, 1966–1981.

    Article  Google Scholar 

  • Galil, Z., & Schieber, B. (1998). On finding most uniform spanning trees. Discrete Applied Mathematics, 20, 173–175.

    Article  Google Scholar 

  • Garfinkel, R. S., Fernández, E., & Lowe, T. J. (2006). The k-centrum shortest path problem. TOP, 14, 279–292.

    Article  Google Scholar 

  • Grötschel, M., Jünger, M., & Reinelt, G. (1984). A cutting plane algorithm for the linear ordering problem. Operational Research, 32(6), 1195–1220.

    Article  Google Scholar 

  • Groetschel, M., Lovasz, L., & Schrijver, A. (1984). Polynomial algorithms for perfect graphs. Annals of Discrete Mathematics, 21, 325–356.

    Google Scholar 

  • Groetschel, M., Lovasz, L., & Schrijver, A. (1993). Geometric algorithms and combinatorial optimization. Berlin: Springer.

    Book  Google Scholar 

  • Gupta, M. C., Gupta, Y. P., & Bector, C. R. (1990). Minimizing the flow-time variance in single-machine systems. Journal of the Operational Research Society, 41(8), 769–779.

    Google Scholar 

  • Gupta, S. K., & Punnen, A. P. (1988). Minimum deviation problems. Operations Research Letters, 7(4), 201–204.

    Article  Google Scholar 

  • Hansen, P. (1980). Bicriterion path problems. In Lecture notes in econom. and math. systems: Vol. 177. Multiple criteria decision making theory and application (pp. 109–127). Proc. third conf., Hagen/Königswinter, 1979. Berlin: Springer.

    Chapter  Google Scholar 

  • Hansen, P., & Labbé, M. (1988). Algorithms for voting and competitive location on a network. Transportation Science, 22(4), 278–288.

    Article  Google Scholar 

  • Hansen, P., Labbé, M., & Thisse, J.-F. (1991). From the median to the generalized center. RAIRO. Recherche Opérationnelle, 25, 73–86.

    Google Scholar 

  • Kalcsics, J., Nickel, S., Puerto, J., & Tamir, A. (2002). Algorithmic results for ordered median problems defined on networks and the plane. Operations Research Letters, 30, 149–158.

    Article  Google Scholar 

  • Kelly, L. M. (1944). Covering problems. National Mathematics Magazine, 19, 123–130.

    Article  Google Scholar 

  • Lawler, E. L. (1966). Covering problems: Duality relations and a new method of solution. SIAM Journal on Applied Mathematics, 14, 1115–1132.

    Article  Google Scholar 

  • Lawler, E. L. (1972). A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Management Science, 18(7), 401–405.

    Article  Google Scholar 

  • Loos, A., Faenza, Y., Kaibel, V., & Peinhardt, M. (2009). Private communication.

  • López de los Mozos, M. C., Mesa, J. A., & Puerto, J. (2008). A generalized model of equality measures in network. Computers & Operations Research, 35, 651–660.

    Article  Google Scholar 

  • Kalcsics, J., Nickel, S., Puerto, J., & Rodriguez-Chia, A. M. (2010). The ordered capacitated facility location problem. Top, 18, 203–222.

    Article  Google Scholar 

  • Marín, A., Nickel, S., Puerto, J., & Velten, S. (2009). A flexible model and efficient solution strategies for discrete location problems. Discrete Applied Mathematics, 157(5), 1128–1145.

    Article  Google Scholar 

  • Martello, S., Pulleyblank, W. R., Toth, P., & de Werra, D. (1984). Balanced optimization problems. Operations Research Letters, 3(5), 275–278.

    Article  Google Scholar 

  • Mesa, J. A., Puerto, J., & Tamir, A. (2003). Improved algorithm for several network location problems with equality measures. Discrete Applied Mathematics, 130, 437–448.

    Article  Google Scholar 

  • Minoux, M. (1989). Network synthesis and optimum network design problems: models, solution methods and applications. Networks, 19, 313–360.

    Article  Google Scholar 

  • Möhring, R. H. (1989). Computationally tractable classes of ordered sets, algorithms and order (pp. 105–193). Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • Nemhauser, G., & Wolsey, L. (1998). Wiley-Interscience series in discrete mathematics and optimization. Integer and combinatorial optimization. New York: Wiley.

    Google Scholar 

  • Nickel, S., & Puerto, J. (2005). Location theory: a unified approach. Heidelberg: Springer.

    Google Scholar 

  • Pascoal, M., Captivo, M. E., & Clímaco, J. (2003). A note on a new variant of Murty’s ranking assignments algorithm. 4OR, 1(3), 243–255.

    Google Scholar 

  • Puerto, J. (2008). A new formulation of the capacitated discrete median problem with {0,1}-assignment. In J. Kalcsics & S. Nickel (Eds.), Operations research proceedings 2007 (pp. 165–170). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Puerto, J., & Rodríguez-Chía, A. M. (2003). Robust positioning of service units. Stochastic Models, 19(1), 125–147.

    Article  Google Scholar 

  • Puerto, J., & Tamir, A. (2005). Locating tree-shaped facilities using the ordered median objective. Mathematical Programming, 102(2), 313–338.

    Article  Google Scholar 

  • Punnen, A. P. (1992). Traveling salesman problem under categorization. Operations Research Letters, 12(2), 89–95.

    Article  Google Scholar 

  • Punnen, A. P., & Aneja, Y. P. (1997). Minimum dispersion problems. Discrete Applied Mathematics, 75(1), 93–102.

    Article  Google Scholar 

  • Punnen, A. P., & Aneja, Y. P. (2004). Lexicographical balanced optimization problems. Operations Research Letters, 32, 27–30.

    Article  Google Scholar 

  • Punnen, A. P., Nair, K. P. K., & Aneja, Y. P. (1995). Generalized bottleneck problems. Optimization, 35(2), 159–169.

    Article  Google Scholar 

  • Reinelt, G. (1985). Research and exposition in mathematics: Vol. 8. The linear ordering problem: algorithms and applications. Berlin: Heldermann Verlag.

    Google Scholar 

  • Schrijver, A. (1983). Min-max results in combinatorial optimization. In Mathematical programming: the state of the art (pp. 439–500), Bonn, 1982. Berlin: Springer.

    Chapter  Google Scholar 

  • Schrijver, A. (2003). Combinatorial optimization: polyhedra and efficiency. Heidelberg: Springer.

    Google Scholar 

  • Schulz, A. S. (1996). Polytopes and scheduling, PhD. in Tech. Univ. Berlin.

  • Slater, P. J. (1978a). Centers to centroids in graphs. Journal of Graph Theory, 2(3), 209–222.

    Article  Google Scholar 

  • Slater, P. J. (1978b). Structure of the k-centra in a tree. In Proceedings of the ninth Southeastern conference on combinatorics, graph theory, and computing (Florida Atlantic Univ., Boca Raton, Fla., 1978), Congress. numer. (Vol. XXI, pp. 663–670), Winnipeg, Man. Utilitas Mathematica.

  • Stanley, R. P. (1986). Two poset polytopes. Discrete & Computational Geometry, 1, 9–23.

    Article  Google Scholar 

  • Tamir, A. (2000). The k-centrum multi-facility location problem. Discrete Applied Mathematics, 109, 292–307.

    Google Scholar 

  • Tamir, A. (2009). Private communication.

  • Tamir, A., Puerto, J., & Perez-Brito, D. (2002). The centdian subtree on tree networks. Discrete Applied Mathematics, 118, 263–278.

    Article  Google Scholar 

  • Turner, L., Punnen, A. P., Aneja, Y. P., & Hamacher, H. W. (2011). On generalized balanced optimization problems. Mathematical Methods of Operations Research, 73, 19–27.

    Article  Google Scholar 

  • Yen, J. Y. (1970/1971). Finding the K shortest loopless paths in a network. Management Science, 17, 712–716.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the suggestions received by a referee that have led to a shorter proof of Theorem 3.1. This research has been partially supported by Spanish Ministry of Science and Innovation/FEDER grants numbers MTM2009-14039-C06-05, MTM2007-67433-C02-(01,02), MTM2010-19576-C02-(01,02), DE2009-0057, Fundación Séneca (08716/PI/08), and Junta de Andalucía/FEDER, grant number FQM-5849.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. Rodríguez-Chía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, E., Puerto, J. & Rodríguez-Chía, A.M. On discrete optimization with ordering. Ann Oper Res 207, 83–96 (2013). https://doi.org/10.1007/s10479-011-1044-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-011-1044-7

Keywords

Navigation