Skip to main content
Log in

Light dual multinets of order six in the projective plane

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Embedded multinets are line arrangements of the projective plane with a rich combinatorial structure. In this paper, we first classify all abstract light dual multinets of order 6 which have a unique line of length at least two. Then we classify the weak projective embeddings of these objects in projective planes over fields of characteristic zero. For the latter we present a computational algebraic method for the study of weak projective embeddings of finite point-line incidence structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlotti, A., Strambach, K.: The geometry of binary systems. Adv. in Math. 49, 1–105 (1983)

    Article  MathSciNet  Google Scholar 

  2. J. Bartz, Multinets in \(\mathbb P\it ^2\) and \(\mathbb P\it ^3\), Ph. D. thesis, University of Oregon (2013)

  3. J. Bartz and S. Yuzvinsky, Multinets in \(\mathbb P\it ^2\), in: Bridging algebra, geometry, and topology, Springer Proc. Math. Stat., 96, Springer (Cham, 2014), pp. 21–35

  4. T. Beth, D. Jungnickel and H. Lenz, Design Theory, Volume I., Second Ed., Cambridge University Press (Cambridge, 1999)

  5. M. Costantini and W. de Graaf, Singular, The GAP interface to Singular, Version 12.04.28 (2012), (GAP package), http://www.gap-system.org/HostedGapPackages/singular/.

  6. W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-0 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2016).

  7. W. Decker, S. Laplagne, G. Pfister and H. Schönemann, primdec.lib. A Singular 4-1-0 library for computing the primary decomposition and radical of ideals (2016)

  8. Falk, M., Yuzvinsky, S.: Multinets, resonance varieties, and pencils of plane curves. Compos. Math. 143, 1069–1088 (2007)

    Article  MathSciNet  Google Scholar 

  9. GAP – Groups, Algorithms, and Programming, Version 4.9.2, The GAP Group (2018), https://www.gap-system.org.

  10. D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, Version 1.12., https://faculty.math.illinois.edu/Macaulay2/ (2018).

  11. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, Second, extended edition, with contributions by Olaf Bachmann. Christoph Lossen and Hans Schönemann, Springer (Berlin (2008)

    MATH  Google Scholar 

  12. Keedwell, A.D., Dénes, J.: Latin Squares and their Applications. Second edition, Elsevier/North-Holland (Amsterdam (2015)

    MATH  Google Scholar 

  13. Korchmáros, G., Nagy, G.P.: Group-labeled light dual multinets in the projective plane. Discrete Math. 341, 2121–2130 (2018)

    Article  MathSciNet  Google Scholar 

  14. Korchmáros, G., Nagy, G.P., Pace, N.: 3-nets realizing a group in a projective plane. J. Algebraic Comb. 39, 939–966 (2014)

    Article  MathSciNet  Google Scholar 

  15. Korchmáros, G., Nagy, G.P., Pace, N.: \(k\)-nets embedded in a projective plane over a field. Combinatorica 35, 63–74 (2015)

    Article  MathSciNet  Google Scholar 

  16. Miguel, Á., Buzunáriz, M.: A description of the resonance variety of a line combinatorics via combinatorial pencils. Graphs Combin. 25, 469–488 (2009)

    Article  MathSciNet  Google Scholar 

  17. G. P. Nagy and N. Pace, Some computational results on small 3-nets embedded in a projective plane over a field, J. Comb. Theory, Ser. A, 120 (2013), 1632–1641

    Article  MathSciNet  Google Scholar 

  18. Pereira, J.V., Yuzvinsky, S.: Completely reducible hypersurfaces in a pencil. Adv. Math. 219, 672–688 (2008)

    Article  MathSciNet  Google Scholar 

  19. SageMath, the Sage Mathematics Software System (Version 8.2), The Sage Developers, http://www.sagemath.org (2018).

  20. L. H. Soicher, DESIGN, The Design Package for GAP, Version 1.6 (2011), (Refereed GAP package), http://www.designtheory.org/software/gap_design/.

  21. J. Stipins, Old and new examples of \(k\)-nets in \(\mathbb P\it ^2\), arXiv:1104.4439v1.

  22. Urzúa, G.: On line arrangements with applications to 3-nets. Adv. Geom. 10, 287–310 (2010)

    Article  MathSciNet  Google Scholar 

  23. Yuzvinsky, S.: Realization of finite abelian groups by nets in \(\mathbb{P}^2\). Compos. Math. 140, 1614–1624 (2004)

    Article  MathSciNet  Google Scholar 

  24. Yuzvinsky, S.: A new bound on the number of special fibers in a pencil of curves. Proc. Amer. Math. Soc. 137, 1641–1648 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Nagy.

Additional information

This research was supported by NKFIH-OTKA Grants 114614 and 119687.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogya, N., Nagy, G. Light dual multinets of order six in the projective plane. Acta Math. Hungar. 159, 520–536 (2019). https://doi.org/10.1007/s10474-019-00936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-019-00936-3

Key words and phrases

Mathematics Subject Classification

Navigation