Skip to main content
Log in

Hypergeometric Cauchy numbers and polynomials

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For positive integers N and M, the general hypergeometric Cauchy polynomials c M,N,n (z) (M, N ≥ 1; n ≥ 0) are defined by

$$\frac{1}{(1+t)^z} \frac{1}{{}_2F_1(M,N;N+1;-t)}=\sum_{n=0}^\infty c_{M,N,n}(z)\, \frac{t^n}{n!}\,, $$

where \({{}_2 F_1(a,b;c;z)}\) is the Gauss hypergeometric function. When M = N = 1, c n  = c 1,1,n are the classical Cauchy numbers. In 1875, Glaisher gave several interesting determinant expressions of numbers, including Bernoulli, Cauchy and Euler numbers. In the aspect of determinant expressions, hypergeometric Cauchy numbers are the natural extension of the classical Cauchy numbers, though many kinds of generalizations of the Cauchy numbers have been considered by many authors. In this paper, we show some interesting expressions of generalized hypergeometric Cauchy numbers. We also give a convolution identity for generalized hypergeometric Cauchy polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aoki and T. Komatsu, Remarks on hypergeometric Bernoulli numbers, preprint.

  2. M. Aoki and T. Komatsu, Remarks on hypergeometric Cauchy numbers, preprint.

  3. Cenkci M., Komatsu T. (2015) Poly-Bernoulli numbers and polynomials with a q parameter. J. Number Theory. 152: 38–54

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheon G.-S., Hwang S.-G., Lee S.-G. (2007) Several polynomials associated with the harmonic numbers. Discrete Appl. Math., 155: 2573–2584

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Comtet, Advanced Combinatorics, Reidel (Dordrecht, 1974).

  6. K. Dilcher, Bernoulli numbers and confluent hypergeometric functions, in: Number Theory for the Millennium, I (Urbana, IL, 2000), A K Peters (Natick, MA, 2002), pp. 343–363.

  7. J. W. L. Glaisher, Expressions for Laplace’s coefficients, Bernoullian and Eulerian numbers etc. as determinants, Messenger (2), 6 (1875), 49–63.

  8. R. Gottfert and H. Niederreiter, Hasse–Teichmüller derivatives and products of linear recurring sequences, in: Finite Fields: Theory, Applications, and Algorithms(Las Vegas, NV, 1993), Contemporary Mathematics, vol. 168, American Mathematical Society (Providence, RI, 1994), pp. 117–125.

  9. H. Hasse, Theorie der höheren Differentiale in einem algebraischen Funktionenkörper mit Vollkommenem Konstantenkörper bei beliebiger Charakteristik, J. Reine Angew. Math., 175 (1936), 50–54.

  10. Hassen A., Nguyen H.D. (2008) Hypergeometric Bernoulli polynomials and Appell sequences. Int. J. Number Theory, 4: 767–774

    Article  MATH  MathSciNet  Google Scholar 

  11. Hassen A., Nguyen H.D. (2010) Hypergeometric zeta functions. Int. J. Number Theory, 6: 99–126

    Article  MATH  MathSciNet  Google Scholar 

  12. Howard F.T. (1967) A sequence of numbers related to the exponential function. Duke Math. J., 34: 599–615

    Article  MATH  MathSciNet  Google Scholar 

  13. Howard F.T. (1967) Some sequences of rational numbers related to the exponential function. Duke Math. J., 34: 701–716

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Hu and M.-S. Kim, On hypergeometric Bernoulli numbers and polynomials, arXiv:1408.3708 (2015).

  15. Kamano K. (2010) Sums of products of hypergeometric Bernoulli numbers. J. Number Theory, 130: 2259–2271

    Article  MATH  MathSciNet  Google Scholar 

  16. Kaneko H., Komatsu T. (2016) Cauchy–Carlitz numbers. J. Number Theory, 163: 238–254

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Kaneko and T. Komatsu, Bernoulli–Carlitz and Cauchy–Carlitz numbers with Stirling–Carlitz numbers, RIMS Kokyuroku Bessatsu (to appear), arXiv:1704.07135.

  18. Komatsu T. (2013) Poly-Cauchy numbers. Kyushu J. Math., 67: 143–153

    Article  MATH  MathSciNet  Google Scholar 

  19. Komatsu T. (2013) Poly-Cauchy numbers with a q parameter. Ramanujan J., 31: 353–371

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Komatsu, Hypergeometric Cauchy numbers, Int. J. Number Theory, 9 (2013), 545–560.

  21. Komatsu T. (2016) Incomplete poly-Cauchy numbers. Monatsh. Math., 180: 271–288

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Komatsu, q-poly-Bernoulli numbers and q-poly-Cauchy numbers with a parameter by Jackson’s integrals, Indag. Math., 27 (2016), 100–111.

  23. T. Komatsu, Generalized incomplete poly-Bernoulli and poly-Cauchy numbers, Period. Math. Hungar. (to appear), DOI: 10.1007/s10998-016-0167-7.

  24. T. Komatsu, Complementary Euler numbers, Period. Math. Hungar. (to appear).

  25. T. Komatsu, V. Laohakosol and K. Liptai, A generalization of poly-Cauchy numbers and their properties, Abstr. Appl. Anal., 2013 (2013), Article ID 179841, 8 pp.

  26. T. Komatsu, I. Mező and L. Szalay, Incomplete Cauchy numbers, Acta Math. Hungar., 149 (2016), 306–323.

  27. T. Komatsu and J. L. Ramirez, Some determinants involving incomplete Fubini numbers, preprint.

  28. Komatsu T., Szalay L. (2014) Shifted poly-Cauchy numbers. Lithuanian Math. J., 54: 166–181

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Komatsu and L. Szalay, q-multiparameter-Bernoulli polynomials and q-multiparameter-Cauchy polynomials by Jackson’s integrals, Integers, 16 (2016), #A39, 11 pp.

  30. T. Komatsu and H. Zhu, Hypergeometric Euler numbers, preprint, arXiv:1612.06210.

  31. Merca M. (2013) A note on the determinant of a Toeplitz–Hessenberg matrix. Spec. Matrices, 1: 10–16

    MATH  MathSciNet  Google Scholar 

  32. Merca M. (2014) A generalization of the symmetric between complete and elementary symmetric functions. Indian J. Pure Appl. Math. 45: 75–89

    Article  MATH  MathSciNet  Google Scholar 

  33. Merlini D., Sprugnoli R., Verri M.C. (2006) The Cauchy numbers. Discrete Math., 306: 1906–1920

    Article  MATH  MathSciNet  Google Scholar 

  34. H. D. Nguyen, Sums of products of hypergeometric Bernoulli polynomials, in: MAA–NJ Section–Spring Meeting (Middle Country College, NJ, April 10, 2010).

  35. H. D. Nguyen and L. G. Cheong, New convolution identities for hypergeometric Bernoulli polynomials, J. Number Theory, 137 (2014), 201–221.

  36. O. Teichmüller, Differentialrechung bei Charakteristik p, J. Reine Angew. Math., 175 (1936), 89–99.

  37. Zhao F.-Z. (2009) Sums of products of Cauchy numbers. Discrete Math., 309: 3830–3842

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Komatsu.

Additional information

The second named author is supported by NSF of China (Grant No. 11671153).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T., Yuan, P. Hypergeometric Cauchy numbers and polynomials. Acta Math. Hungar. 153, 382–400 (2017). https://doi.org/10.1007/s10474-017-0744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-017-0744-0

Key words and phrases

Mathematics Subject Classification

Navigation