Skip to main content
Log in

Convexity, moduli of smoothness and a Jackson-type inequality

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

For a Banach space B of functions which satisfies for some m>0

$$ \max ({\|F+G\|}_B,{\|F-G\|}_B)\geqq ({\|F\|}^s_B+m{\|G\|}^s_B)^{1/s},\quad \forall \,F,G\in B $$
(∗)

a significant improvement for lower estimates of the moduli of smoothness ω r(f,t) B is achieved. As a result of these estimates, sharp Jackson inequalities which are superior to the classical Jackson type inequality are derived. Our investigation covers Banach spaces of functions on ℝd or \(\mathbb{T}^{d}\) for which translations are isometries or on S d−1 for which rotations are isometries. Results for C 0 semigroups of contractions are derived. As applications of the technique used in this paper, many new theorems are deduced. An L p space with 1<p<∞ satisfies () where s=max  (p,2), and many Orlicz spaces are shown to satisfy () with appropriate s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. E. Belinsky, F. Dai and Z. Ditzian, Multivariate approximating averages, J. Approx. Theory, 125 (2003), 85–105.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Bennet and R. Sharpley, Interpolation of Operators, Academic Press (New York, 1988).

    Google Scholar 

  3. P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation, Springer Verlag (Berlin, 1967).

    MATH  Google Scholar 

  4. F. Dai and Z. Ditzian, Combinations of multivariate averages, J. Approx. Theory, 131 (2004), 268–283.

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Dai and Z. Ditzian, Strong converse inequality for Poisson sums, Proc. Amer. Math. Soc., 133 (2005), 2609–2611.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Dai and Z. Ditzian, Cesàro summability and Marchaud inequality, Constr. Approx., 25 (2007), 73–88.

    Article  MATH  MathSciNet  Google Scholar 

  7. F. Dai, Z. Ditzian and S. Tikhonov, Sharp Jackson inequalities, J. Approx. Theory, 151 (2008), 86–112.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. DeVore and G. Lorentz, Constructive Approximation, Springer Verlag (Berlin, 1993).

    MATH  Google Scholar 

  9. Z. Ditzian, On the Marchaud inequality, Proc. Amer. Math. Soc., 103 (1988), 198–202.

    MATH  MathSciNet  Google Scholar 

  10. Z. Ditzian, Multivariate Landau–Kolmogorov-type inequality, Math. Proc. Camb. Phil. Soc., 105 (1989), 335–350.

    Article  MATH  MathSciNet  Google Scholar 

  11. Z. Ditzian, Multidimensional Jacobi-type Bernstein–Durrmeyer operators, Acta Sci. Math. (Szeged), 60 (1995), 225–243.

    MATH  MathSciNet  Google Scholar 

  12. Z. Ditzian, Fractional derivatives and best approximation, Acta Math. Hungar., 81 (1998), 323–348.

    Article  MATH  MathSciNet  Google Scholar 

  13. Z. Ditzian, A modulus of smoothness on the unit sphere, J. d’Anal. Math., 79 (1999), 189–200.

    Article  MATH  MathSciNet  Google Scholar 

  14. Z. Ditzian, Approximation on Banach spaces of functions on the sphere, J. Approx. Theory, 140 (2006), 31–45.

    Article  MATH  MathSciNet  Google Scholar 

  15. Z. Ditzian and K. G. Ivanov, Strong converse inequalities, J. d’Anal. Math., 61 (1993), 61–111.

    Article  MATH  MathSciNet  Google Scholar 

  16. Z. Ditzian and A. Prymak, Sharp Marchaud and converse inequalities in Orlicz spaces, Proc. Amer. Math. Soc., 135 (2007), 1115–1121.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge University Press (Cambridge, 2001).

    Book  MATH  Google Scholar 

  18. Y. Lindenstrauss and L. Tzafriri, Banach Spaces, Vol. II, Springer-Verlag (Berlin, 1979).

    Google Scholar 

  19. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker (New York, 1991).

    MATH  Google Scholar 

  20. V. Totik, Sharp converse theorem of L p polynomial approximation, Constr. Approx., 4 (1988), 419–433.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Ditzian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditzian, Z., Prymak, A. Convexity, moduli of smoothness and a Jackson-type inequality. Acta Math Hung 130, 254–285 (2011). https://doi.org/10.1007/s10474-010-0008-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-010-0008-8

Key words and phrases

2000 Mathematics Subject Classification