Skip to main content

Advertisement

Log in

Evaluating nanomagnetic logic circuit layouts using different clock schemes

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The complementary metal oxide semiconductor technology, CMOS, is reaching its physical limitations, as the transistors’ feature size decreases. A promising alternative is the nanomagnetic logic technology (NML), a paradigm of field-coupled nanocomputing. This technology applies single domain nanomagnets to implement digital logic with switching energies that are orders of magnitude lower than a CMOS transistor due to the complete absence of static energy dissipation. When designing nanomagnetic circuitry, several challenges arise, such as the design of a clocking system able to avoid signal disruption due to the thermal noise effect. In this paper, we compare four NML clocking schemes: BANCS, USE, RES, and 2DDWave by analyzing scalability and area overhead of combinational and sequential circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Anderson, N. G., & Bhanja, S. (2014). Field-coupled nanocomputing (1st ed., Vol. 8280). Berlin: Springer.

    Book  Google Scholar 

  2. Atulasimha, J., & Bandyopadhyay, S. (2010). Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets. Applied Physics Letters, 97, 173105–173105. https://doi.org/10.1063/1.3506690.

    Article  Google Scholar 

  3. Bhowmik, D., You, L., & Salahuddin, S. (2013). Spin hall effect clocking of nanomagnetic logic without magnetic field. Nature Nanotechnology,. https://doi.org/10.1038/nnano.2013.241.

    Article  Google Scholar 

  4. Campos, C. A. T., Marciano, A. L., Neto, O. P. V., & Torres, F. S. (2016). Use: a universal, scalable, and efficient clocking scheme for QCA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 35(3), 513–517.

    Article  Google Scholar 

  5. Cavin, R. K., Lugli, P., & Zhirnov, V. V. (2012). Science and engineering beyond Moore’s law. In Proceedings of the IEEE 100 (Special Centennial Issue) (pp. 1720–1749).

  6. Chih-Tang, S. (1988). Evolution of the mos transistor-from conception to VLSI. Proceedings of the IEEE, 76, 1280–1326. https://doi.org/10.1109/5.16328.

    Article  Google Scholar 

  7. Csaba, G., & Porod, W. (2010). Behavior of nanomagnet logic in the presence of thermal noise. In 14th International Workshop on Computational Electronics (Vol. 75). https://doi.org/10.1109/IWCE.2010.5677954.

  8. Csaba, G., Porod, W., & Csurgay, Á. I. (2003). A computing architecture composed of field-coupled single domain nanomagnets clocked by magnetic field. International Journal of Circuit Theory and Applications, 31, 67–82. https://doi.org/10.1002/cta.226.

    Article  MATH  Google Scholar 

  9. Fontes, G., Silva, P. A. R., Nacif, J. A. M., Neto, O. P. V., & Ferreira, R. (2018). Placement and routing by overlapping and merging QCA gates. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1–5). IEEE

  10. Formigoni, R. E., Vilela Neto, O. P., & Nacif, J. A. M. (2018). BANCS: Bidirectional alternating nanomagnetic clocking scheme. In 2018 31st symposium on integrated circuits and systems design (SBCCI) (pp. 1–6).

  11. Formigoni, R. E., Ferreira, R. S., & Nacif, J. A. M. (2019) Ropper: A placement and routing framework for field-coupled nanotechnologies. In 32nd symposium on integrated circuits and systems design (SBCCI ’19), August 26–30, 2019, Sao Paulo, Brazil, 10(1145/3338852), 3339838.

  12. Goswami, M., Mondal, A., Mahalat, M. H., Sen, B., & Sikdar, B. K. (2019). An efficient clocking scheme for quantum-dot cellular automata. International Journal of Electronics Letters,. https://doi.org/10.1080/21681724.2019.1570551.

    Article  Google Scholar 

  13. Graziano, M., Vacca, M., Chiolerio, A., & Zamboni, M. (2011). An NCL-HDL snake-clock-based magnetic QCA architecture. IEEE Transactions on Nanotechnology, 10(5), 1141–1149. https://doi.org/10.1109/TNANO.2011.2118229.

    Article  Google Scholar 

  14. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G. H., & Porod, W. (2006). Majority logic gate for magnetic quantum-dot cellular automata. Science, 311(5758), 205–208. https://doi.org/10.1126/science.1120506.

    Article  Google Scholar 

  15. Israeli, A., & Itai, A. (1986). A fast and simple randomized parallel algorithm for maximal matching. Information Processing Letters, 22(2), 77–80.

    Article  MathSciNet  Google Scholar 

  16. Karypis, G., & Kumar, V. (1995). Multilevel graph partitioning schemes. In ICPP (Vol. 3, pp. 113–122).

  17. Karypis, G., & Kumar, V. (1996). Parallel multilevel graph partitioning. In Proceedings of international conference on parallel processing (pp. 314–319). IEEE.

  18. Karypis, G., & Kumar, V. (1998). A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1), 71–95.

    Article  Google Scholar 

  19. Lent, C. S., & Tougaw, P. D. (1997). A device architecture for computing with quantum dots. Proceedings of the IEEE, 85, 541–557. https://doi.org/10.1109/5.573740.

    Article  Google Scholar 

  20. Niemier, M. T., Hu, X. S., Alam, M., Bernstein, G., Porod, W., Putney, M., & DeAngelis, J. (2007). Clocking structures and power analysis for nanomagnet-based logic devices. In International symposium on low power electronics and design (ISLPED), 2007 (pp. 26–31). ACM/IEEE. https://doi.org/10.1145/1283780.1283787.

  21. Santoro, G., Vacca, M., Bollo, M., Riente, F., Graziano, M., & Zamboni, M. (2018). Exploration of multilayer field-coupled nanomagnetic circuits. Microelectronics Journal, 79, 46–56.

    Article  Google Scholar 

  22. Schloegel, K., Karypis, G., & Kumar, V. (2003). Graph partitioning for high-performance scientific simulations (pp. 491–541). San Francisco, CA: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  23. Soeken, M., Riener, H., Haaswijk, W., & De Micheli. G. (2018). The EPFL logic synthesis libraries. arXiv:1805.05121

  24. Trindade, A., Ferreira, R., Nacif, J. A. M., Sales, D., & Neto, O. P. V. (2016). A placement and routing algorithm for quantum-dot cellular automata. In 2016 29th symposium on integrated circuits and systems design (SBCCI) (pp. 1–6). IEEE.

  25. Vacca, M., Frache, S., Graziano, M., Riente, F., Turvani, G., Ruo Roch, M., & Zamboni, M. (2014a). Topolinano: Nanomagnet logic circuits design and simulation. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 8280, pp. 274–306). https://doi.org/10.1007/978-3-662-45908-9_12.

  26. Vacca, M., Graziano, M., Chiolerio, A., Lamberti, A., Laurenti, M., Balma, D., et al. (2014b). Electric clock for nanomagnet logic circuits (pp. 73–110). Berlin: Springer. https://doi.org/10.1007/978-3-662-43722-3_5.

    Book  Google Scholar 

  27. Vankamamidi, V., Ottavi, M., & Lombardi, F. (2006). Clocking and cell placement for QCA. In 2006 Sixth IEEE Conference on Nanotechnology (Vol. 1, pp. 343–346). https://doi.org/10.1109/NANO.2006.247647.

  28. Vankamamidi, V., Ottavi, M., & Lombardi, F. (2008). Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27, 34–44. https://doi.org/10.1109/TCAD.2007.907020.

    Article  MATH  Google Scholar 

  29. Varga, E., Liu, S., Niemier, M. T., Porod, W., Hu, X. S., Bernstein, G. H., et al. (2010). Experimental demonstration of fanout for nanomagnet logic. In Device research conference (DRC) (Vol. 2010, pp. 95–96). https://doi.org/10.1109/DRC.2010.5551852.

  30. Varga, E., Csaba, G., Bernstein, G.H., & Porod, W. (2011). Implementation of a nanomagnetic full adder circuit. In 2011 11th IEEE Conference on Nanotechnology (IEEE-NANO) (pp. 1244–1247). https://doi.org/10.1109/NANO.2011.6144445.

  31. Walter, M., Wille, R., Große, D., Sill Torres, F., & Drechsler, R. (2019a). Placement and routing for tile-based field-coupled nanocomputing circuits is np-complete (research note). ACM Journal on Emerging Technologies in Computing Systems, 15, 1–10. https://doi.org/10.1145/3312661.

    Article  Google Scholar 

  32. Walter, M., Wille, R., Torres, F.S., Große, D., & Drechsler, R. (2019b). fiction: An open source framework for the design of field-coupled nanocomputing circuits.

  33. Wanlass, F., & Sah, C. (1963). Nanowatt logic using field-effect metal-oxide semiconductor triodes. In Solid-state circuits conference. Digest of technical papers. 1963 IEEE international (pp. 1280–1326). https://doi.org/10.1109/ISSCC.1963.1157450.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruan Evangelista Formigoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formigoni, R.E., Vieira, L.L.A., Neto, O.P.V. et al. Evaluating nanomagnetic logic circuit layouts using different clock schemes. Analog Integr Circ Sig Process 106, 205–218 (2021). https://doi.org/10.1007/s10470-020-01648-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01648-3

Keywords

Navigation