Skip to main content
Log in

A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A 2.8-to-5.8 GHz harmonic VCO designed in a 28 nm UTBB FD-SOI CMOS process adopts a reconfigurable active core to save power at the lower oscillation frequencies, and to enable a trade-off between power consumption and phase noise at all frequencies. Interference caused by the magnetic coupling to and from the VCO inductor is greatly attenuated by resorting to an inductor in the shape of an 8. Simulations of the magnetic coupling between an 8-shaped inductor and a reference inductor show a reduction in magnetic coupling as high as 44 dB, depending also on size, orientation, and shape of the reference inductor. The UTBB FD-SOI CMOS process is instrumental to achieve a tuning range in excess of one octave at low power consumption. The VCO operates from 0.9 V and has a figure-of-merit of 186–189 dBc/Hz, depending on the oscillation frequency and the configuration of the oscillator core. The active area of the VCO is 380 × 700 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mattsson, T. (2006). Method of and inductor layout for reduced vco coupling, US Patent 7,151,430 B2.

  2. Poon, A., Chang, A., Samavati, H., & Wong, S. S. (2009). Reduction of inductive crosstalk using quadrupole inductors. IEEE Journal of Solid-State Circuits, 44(6), 1756–1764.

    Article  Google Scholar 

  3. Tesson, O. (2008). High quality monolithic 8-shaped inductors for silicon RF IC design. In Silicon monolithic integrated circuits in RF systems, 2008. SiRF 2008. IEEE Topical Meeting on, Orlando, FL (pp. 94–97).

  4. Nagata, M., Masuoka, H., Fukase, S., Kikuta, M., Morita, M., & Itoh, N. (2006) 5.8 GHz RF transceiver LSI including on-chip matching circuits. In Proceedings of IEEE BCTM.

  5. Blalack, T., Leclercq, Y., & Yue, C. P. (2002). On-chip RF isolation techniques. In Bipolar/BiCMOS circuits and technology meeting. Proceedings of the 2002 (pp. 205–211).

  6. Mikkelsen, J. H., Jensen O. K., & Larsen, T. (2004). Measurement and modeling of coupling effects of CMOS on-chip coplanar inductors. In Silicon monolithic integrated circuits in RF systems, 2004. digest of papers. 2004 topical meeting (pp. 37–40).

  7. Durand, C., Gianesello, F., & Gloria, D. (2011). Innovative 8-shaped inductors integrated in an advanced BiCMOS technology. In: Silicon monolithic integrated circuits in RF systems (SiRF), 2011 IEEE 11th topical meeting on, Phoenix, AZ (pp. 81–84).

  8. Tesson, O., & Wane, S. (2010). Two complementary methods for parasitic coupling reduction within MMIC’s. In Advances in circuits, electronics and micro-electronics (CENICS), 2010 third international conference on Venice (pp. 61–65).

  9. Neihart, N. M., Allstot, D. J., Miller, M., & Rakers, P. (2008). Twisted inductors for low coupling mixed-signal and RF applications. In IEEE custom integrated circuits conference, San Jose, CA (pp. 575–578).

  10. Amaya, R. E., Popplewell, P. H. R., Cloutier, M., & Plett, C. (2005). EM and substrate coupling in silicon RFICs. IEEE Journal of Solid-State Circuits, 40(9), 1968–1971.

    Article  Google Scholar 

  11. Xu, X., Zou, W., Du, J., Chen, X., & Zou, X. (2012). Predictive calculation of coupling coefficient between on-chip small-area multilayer inductors. In Solid-state and integrated circuit technology (ICSICT), 2012 IEEE 11th international conference on Xi’an (pp. 1–4).

  12. Li, G., Liu, L., Tang, Y., & Afshari, E. (2012). A low-phase-noise wide-tuning-range oscillator based on resonant mode switching. IEEE Journal of Solid-State Circuits, 47(6), 1295–1308.

    Article  Google Scholar 

  13. Fanori, L., Mattsson, T., & Andreani, P. (2014). A 2.4-to-5.3 GHz dual-core CMOS VCO with concentric 8-shaped coils. In 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC), San Francisco, CA (pp. 370–371).

  14. Bevilacqua, A., Pavan, F. P., Sandner, C., Gerosa, A., & Neviani, A. (2007). Transformer-based dual-mode voltage-controlled oscillators. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(4), 293–297.

    Article  Google Scholar 

  15. Borremans, J., et al. (2008). A compact wideband front-end using a single-inductor dual-band VCO in 90 nm digital CMOS. IEEE Journal of Solid-State Circuits, 43(12), 2693–2705.

    Article  Google Scholar 

  16. Huo, Y., Mattsson, T., & Andreani, P. (2010). A switched-transformer, 76 % tuning-range VCO in 90 nm CMOS. In 2010 Asia-pacific microwave conference, Yokohama (pp. 1043–1046).

  17. Bevilacqua, A., Pavan, F. P., Sandner, C., Gerosa, A., & Neviani, A. (2006) A 3.4-7 GHz transformer-based dual-mode wideband VCO. In 2006 Proceedings of the 32nd European solid-state circuits conference, Montreux (pp. 440–443).

  18. Andreani, P., Kozmin, K., Sandrup, P., Nilsson, M., & Mattsson, T. (2011). A TX VCO for WCDMA/EDGE in 90 nm RF CMOS. IEEE Journal of Solid-State Circuits, 46(7), 1618–1626.

    Article  Google Scholar 

  19. Demirkan, M., Bruss, S. P., & Spencer, R. R. (2008). Design of wide tuning-range CMOS VCOs using switched coupled-inductors. IEEE Journal of Solid-State Circuits, 43(5), 1156–1163.

    Article  Google Scholar 

  20. Liscidini, A., Fanori, L., Andreani, P., & Castello, R. (2012). A 36mW/9mW power-scalable DCO in 55 nm CMOS for GSM/WCDMA frequency synthesizers. In 2012 IEEE international solid-state circuits conference, San Francisco, CA (pp. 348–350).

  21. Liscidini, A., Fanori, L., Andreani, P., & Castello, R. (2014). A power-scalable DCO for multi-standard GSM/WCDMA frequency synthesizers. IEEE Journal of Solid-State Circuits, 49(3), 646–656.

    Article  Google Scholar 

  22. Vecchi, F., Repossi, M., Mazzanti, A., Arcioni, P., & Svelto, F. (2008) A simple and complete circuit model for the coupling between symmetrical spiral inductors in silicon RF-ICs. In: 2008 IEEE radio frequency integrated circuits symposium, Atlanta, GA (pp. 479–482).

  23. Jacquet, D., et al. (2014). A 3 GHz dual core processor ARM cortex TM -A9 in 28 nm UTBB FD-SOI CMOS With ultra-wide voltage range and energy efficiency optimization. IEEE Journal of Solid-State Circuits, 49(4), 812–826.

    Article  Google Scholar 

  24. Toso, S. D., Bevilacqua, A., Gerosa, A., & Neviani, A. (2010). A thorough analysis of the tank quality factor in LC oscillators with switched capacitor banks. In Proceedings of 2010 IEEE international symposium on circuits and systems, Paris (pp. 1903–1906).

  25. Hegazi, E., Sjoland, H., & Abidi, A. A. (2001). A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 36(12), 1921–1930.

    Article  Google Scholar 

  26. Berny, A. D. (2006). Analysis and design of wideband LC VCOs. Ph.D. Dissertation, Electrical Engineering and Computer Sciences, University of California at Berkeley, CA, USA, May 2006.

  27. Taghivand, M., Aggarwal, K., & Poon, A. S. Y. (2014). A 3.24-to-8.45 GHz low-phase-noise mode-switching oscillator. In 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC), San Francisco, CA (pp. 368–369).

  28. Sadhu, B., Kim, J., & Harjani, R. (2009). A CMOS 3.3-8.4 GHz wide tuning range, low phase noise LC VCO. In 2009 IEEE custom integrated circuits conference, San Jose, CA (pp. 559–562).

Download references

Acknowledgments

The authors are deeply grateful to STMicroelectronics for the generous silicon donation. This work was supported by the Swedish Foundation for Strategic Research (SSF) under the DARE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, A., Fanori, L., Mattsson, T. et al. A 2.8-to-5.8 GHz harmonic VCO based on an 8-shaped inductor in a 28 nm UTBB FD-SOI CMOS process. Analog Integr Circ Sig Process 88, 391–399 (2016). https://doi.org/10.1007/s10470-016-0759-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0759-4

Keywords

Navigation