Skip to main content
Log in

Design of a synchronous boost DC–DC converter with constant current mode control in MPP

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper introduces a constant current control mode (CCM) method for boost DC–DC converters with synchronous rectifiers. The aim is to enlarge the application range, meeting the requirement in markets of mobile power pack (MPP). Historically, the boost DC–DC converters applied in a MPP only have a constant voltage control mode (VCM) loop to provide a fixed output voltage for discharging and usually use short circuit protection to avoid chip damage when the output current exceeds the limitation value. The proposed CCM implemented with a precision buffer for reference voltage and an extra error amplifier has guaranteed a continuous current for loading in the MPP which can strongly enhance the battery life. For a proof of concept, a boost DC–DC converter was implemented with the proposed CCM in a 0.6 μm 5 V BCD SILTERRA process with an area of 2.484 mm2. The experimental results demonstrate steady conversion from VCM to CCM control. Besides, the load current boundary value in CCM achieves a variation within 10 % at both 1 and 2 A load current under different supply voltages which can meet the maximum limit of MPP application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Peterchev, A. V., & Sanders, S. R. (2006). Load-line regulation with estimated load-current feed forward: Application to microprocessor voltage regulators. IEEE Transactions on Power Electronics, 21(6), 1704–1717.

    Article  Google Scholar 

  2. Huang, H.-H., Hsieh, C.-Y., Liao, J.-Y., & Chen, K.-H. (2011). Adaptive droop resistance technique for adaptive voltage positioning in boost DC–DC converters. IEEE Transactions on Power Electronics, 26(7), 1920–1932.

    Article  Google Scholar 

  3. Absi, M.-A., & Sabban, I.-A. (2014). A CMOS current-mode squaring circuit free of error resulting from carrier mobility reduction. Analog Integrated Circuits and Signal Processing, 81(1), 23–28.

    Article  Google Scholar 

  4. Lee, C.-S., Ko, H.-H., & Kim, N.-S. (2014). Integrated current-mode DC–DC boost converter with high-performance control circuit. Analog Integrated Circuits and Signal Processing, 80(1), 105–112.

    Article  MathSciNet  Google Scholar 

  5. Ferdowsi, M., & Emadi, A. (2014). Estimative current mode control technique for DC–DC converters operating in discontinuous conduction mode. IEEE Power Electronics Letters, 2(1), 20–23.

    Article  Google Scholar 

  6. Guemez, J. G., & Valenzuela, J. M. (2013). Saturated control of boost DC-to-DC power converter. IET Electronics Letters, 49(9), 613–615.

    Article  Google Scholar 

  7. Julio, C. R., & Fernando, M. D. (2013). A transformer-less high-gain boost converter with input current ripple cancellation at a selectable duty cycle. IEEE Transactions on Industrial Electronics, 60(10), 4492–4499.

    Article  Google Scholar 

  8. Kimball, Jonathan W., Flowers, Theresa L., & Chapman, Patrick L. (2004). Low-input-voltage, low-power boost converter design issues. IEEE Power Electronics Letters, 2(3), 96–99.

    Article  Google Scholar 

  9. Woo, Y.-J., Cho, G.-H., & Cho, G.-H. (2007). Power-efficient gate control of synchronous boost converters with high output voltage. IET Electronics Letters, 43(3), 156–157.

    Article  Google Scholar 

  10. Shi, L.-F., & Jia, W.-G. (2014). Mode-selectable high-efficiency low-quiescent-current synchronous buck DC–DC converter. IEEE Transactions on Industrial Electronics, 61(5), 2278–2285.

    Article  Google Scholar 

  11. Yuan, B., Lai, X.-Q., Wang, H.-Y., & Shi, L.-F. (2013). High-efficient hybrid buck converter with switch-on-demand modulation and switch size control for wide-load low-ripple applications. IEEE Transactions on Microwave Theory and Techniques, 61(9), 3329–3338.

    Article  Google Scholar 

  12. P. T. Krein, Elements of Power Electronics. New York: Oxford, 1997.

  13. Li, Y.-J., Lai, X.-Q., Ye, Q., & Yuan, B. (2014). Novel short circuit protection technique for DC–DC buck converters. IET Circuits, Devices and Systems, 8(2), 90–99.

    Article  Google Scholar 

  14. Chen, B.-Y., & Lai, Y.-S. (2012). New digital-controlled technique for battery charger with constant current and voltage control without current feedback. IEEE Transactions on Industrial Electronics, 59(3), 1545–1553.

    Article  Google Scholar 

  15. Raman, J., Rombouts, P., & Weyten, L. (2010). Folded-cascode amplifier with efficient feed-forward gain-boosting. IET Electronics Letters, 46(21), 1425–1426.

    Article  Google Scholar 

  16. Hsieh, C.-Y., Yang, C.-Y., & Chen, K.-H. (2009). A charge-recycling buck-store and boost-restore (BSBR) technique with dual outputs for RGB LED backlight and flashlight module. IEEE Transactions on Power Electronics, 24(8), 1914–1925.

    Article  Google Scholar 

  17. Man, T. Y., Mok, P. K. T., & Chan, M. J. (2008). A 0.9-V Input discontinuous conduction-mode boost converter with CMOS-control rectifier. IEEE Journal of Solid-State Circuits, 43(9), 2306–2346.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61106026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxiao Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Lai, X. & Liu, C. Design of a synchronous boost DC–DC converter with constant current mode control in MPP. Analog Integr Circ Sig Process 84, 223–235 (2015). https://doi.org/10.1007/s10470-015-0567-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-015-0567-2

Keywords

Navigation