Skip to main content
Log in

1–8 GHz high efficiency single-stage travelling wave power amplifier

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes a Class-A/AB wideband power amplifier that comprises of a single-stage transistor travelling wave structure in which capacitive coupling and frequency dependent lossy artificial-line are employed at the input of the active device. The proposed technique significantly enhances the amplifier’s gain-bandwidth product, input match and gain flatness performance. To ensure the amplifier delivers a predefined power to the load over its entire operating band 2-to-8 GHz a broadband load-pull technique was applied at the output of the amplifier. To avoid reduction in the amplifier’s bandwidth resulting from parasitic capacitive effects associated with the off-chip choke inductor a wideband RF choke was designed. The 1.31 × 2.93 mm2 power amplifier was fabricated using 0.25 μm GaAs pHEMT MMIC process. The measurement results show that the proposed amplifier delivers an average P sat of 29.5 dBm and P out,1 dB of 26 dBm, and the corresponding PAE levels are 55 and 35 % for the P sat and P out,1 dB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lin, S., Eron, M., & Fathy, A. E. (2009). Development of ultra wideband, high efficiency, distributed power amplifiers using discrete GaN HEMTs. IET Circuits, Devices and Systems, 3(3), 135–142.

    Article  Google Scholar 

  2. Wu, Q., Wu, Y., Fu, J., Jin, B., & Lee, J. C. (2005). An approach to ultra-broadband medium-power MMIC cascode-pair distributed amplifier design. IEICE Transactions, 88-C(7), 1353–1357.

    Google Scholar 

  3. Colantonio, P., Giannini, F., Giofre, R., & Piazzon, L. (2008). High-efficiency ultra-wideband power amplifier in GaN technology. Electronics Letters, 44(2), 130–131.

    Article  Google Scholar 

  4. Sewiolo, B., Fischer, G., & Weigel, R. (2009). A 12-GHz high-efficiency tapered traveling-wave power amplifier with novel power matched cascode gain cells using SiGe HBT transistors. IEEE Transactions on Microwave Theory and Techniques, 57(10), 2329–2336.

    Article  Google Scholar 

  5. Xie, C., & Pavio, A. (2007). Development of GaN HEMT based high power high efficiency distributed power amplifier for military applications (pp. 1–4). Washington: Military Communications Conference (MILCOM).

    Google Scholar 

  6. Narendra, K., Limiti, E., Paoloni, C., Collantes, J. M., Jansen, R. H., & Yarman, B. S. (2010). Vectorially combined distributed power amplifier with load pull impedance determination. Electronics Letters, 46(16), 1137–1138.

    Article  Google Scholar 

  7. Krishnamurthy, K., Veturi, R., et al. (2000). Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers. IEEE Journal of Solid State Circuits, 35(9), 1285–1292.

    Article  Google Scholar 

  8. Zhongzi, C., et al. (2009). A 4–9 GHz 10 W wideband power amplifier. Journal of Semiconductors, 30(2).

  9. Xu, J., Wang, Z., Zhang, Y., & Ma, L. (2011). High-efficiency tapered distributed power amplifier with 2 μm GaAs HBT process. Microwave and Optical Technology Letters, 53(8), 1924–1927.

    Article  Google Scholar 

  10. Banyamin, B., & Berwick, M. (2000). The gain advantages of four cascaded single stage distributed amplifier configurations. Microwave Symposium Digest, IEEE MTT-S International, 3, 1325–1328.

    Google Scholar 

  11. Kinghorn, A. M. (2008). Where next for airborne AESA technology? In IEEE radar conference proceedings, Rome (pp. 287–290). Rome.

  12. Abstract on Call For Papers, IEEE topical conference on RF power amplifiers for wireless and radio application. http://www.radiowirelessweek.org/pawr/. Accessed 20 January 2012.

  13. Nelson, S. R., & Macksey, H. M. (1981). 2-18 GHz, high-efficiency, medium-power GaAs FET amplifiers. Microwave Symposium Digest, IEEE MTT-S International, vol(15-19), 31–33.

    Google Scholar 

  14. Reese, E., Allen, D., Lee, C., & Nguyen, T. (2010). Wideband power amplifier MMICs utilizing GaN on SiC. In IEEE MTT-S International Microwave Symposium Digest, Anaheim (pp. 1230–1233). Anaheim.

  15. Itoh, Y., Mochizuki, M., Nii, M., Kohno, Y., & Takagi, T. (1996). An ultrabroadband monolithic lossy match power amplifier using prematching circuits. Electronics and Communications in Japan (Part II: Electronics), 79, 24–38.

    Article  Google Scholar 

  16. Green, B. M., Tilak, V., Sungjae, L., Hyungtak, K., Smart, J. A., Webb, K. J., et al. (2001). High-power broadband AlGaN/GaN HEMT MMICs on SiC substrates. Microwave Symposium Digest, IEEE MTT-S International, 2, 1059–1062.

    Google Scholar 

  17. Sayed, A., & Boeck, G. (2005). Two-stage ultrawide-band 5-W power amplifier using SiC MESFET. IEEE Transactions on Microwave Theory and Techniques, 53(7), 2441–2449.

    Article  Google Scholar 

  18. Ayasli, Y., et al. (1982). A monolithic GaAs 1-13-GHz traveling-wave amplifier. IEEE Transactions on Microwave Theory and Techniques, MTT-30(7), 976–981.

    Article  Google Scholar 

  19. Campovecchio, M., et al. (1996). Large signal design method of distributed power amplifiers applied to a 2–18 GHz GaAs chip exhibiting high power density performances. International Journal of Microwave and MMW CAE, 6(4), 259–269.

    Google Scholar 

  20. Wong, T. T. Y. (1993). Fundamentals of distributed amplifiers. Boston, MA: Artech House.

    Google Scholar 

  21. Ayasli, Y., Miller, S. W., Mozzi, R., & Hanes, L. K. (1984). Capacitively coupled traveling-wave power amplifier. IEEE Transactions on Microwave Theory and Techniques, MTT-32(12), 1704–1709.

    Article  Google Scholar 

  22. Virdee, A. S., & Virdee, B. S. (2000). Experimental performance of ultra broadband amplifier design concept employing cascaded reactively terminated single-stage distributed amplifier configuration. Electronics Letters, 36(18), 1554–1555.

    Article  Google Scholar 

  23. Virdee, B. S., Yazgi, M., & Virdee, A. S. (2007). Cascaded single-stage amplifier with improved gain-frequency performance using frequency-dependent lossy artificial lines. In Proceedings of the 2nd European microwave integrated circuits conference, Munich (pp. 184–186). Munich.

  24. Krishnamurthy, K., Long, S. I., & Rodwell M. J. W. (1999). Cascode-delay-matched distributed amplifiers for efficient broadband microwave power amplification. In IEEE MTT-S International Microwave Symposium Digest, vol. 2 of 4, Anaheim, CA, (pp. 819–822). Anaheim, CA.

  25. Yazgi, M., Sayginer, M., Virdee, B. S., Toker, A., & Kuntman, H. (2010). Single-stage travelling wave amplifier for power applications. In Proceedings of OPTIM’2010: 12th international conference on optimization of electrical and electronic equipment, CD-ROM, Romania (pp. 949–952). Romania.

  26. Cripps, S. C. (2006). RF power amplifier design for wireless communications. Norwood, MA: Artech House.

    Google Scholar 

  27. Sayginer, M., Yazgi, M., & Kuntman, H. (2011). 0.1–10 GHz 0.5 W high efficiency single transistor GaAs PHEMT power amplifier design using load-pull simulations. In SİU’2011: IEEE 19. Signal Sinyal İşleme ve İletişim Uygulamaları Kurultayı, Kemer, Antalya, (pp. 841–844, 20–22). Kemer, Antalya.

  28. Sechi, F., & Bujatti, M. (2009). Solid-state microwave high-power amplifiers. Norwood, MA: Artech House.

    Google Scholar 

  29. Virdee, B. S., et al. (2004). Broadband microwave amplifiers. Norwood, MA: Artech House.

    Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the assistance and support of The Scientific and Technological Research Council of Turkey (TUBITAK Project-1001-107E253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Sayginer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayginer, M., Yazgi, M., Kuntman, H.H. et al. 1–8 GHz high efficiency single-stage travelling wave power amplifier. Analog Integr Circ Sig Process 74, 111–119 (2013). https://doi.org/10.1007/s10470-012-9863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9863-2

Keywords

Navigation