Skip to main content
Log in

A novel design of local-feedback MOS transconductor using techniques for cancellation of mobility degradation and linearization of differential output current characteristic

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, a novel design of a local-feedback MOS transconductor using a technique of canceling mobility degradation and a linearization technique of differential output current characteristics is proposed. In the proposed techniques, adaptively biasing current sources are employed to improve linearity deterioration due to mobility degradation effect and to terminate differential output nodes for elimination of second-order nonlinear terms. The proposed transconductor has good linearity. Simulation results show that the proposed techniques are effective for improvement of linear characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Pennock, J. L. (1985). CMOS triode transconductor for continuous-time active integrated filters. Electronics Letters, 21(18), 817–818.

    Article  Google Scholar 

  2. Wang, Z. (1990). Novel linearisation technique for implementing large-signal MOS tunable transconductor. Electronics Letters, 26(2), 138–139.

    Article  Google Scholar 

  3. Szczepanski, S., Wyszynski, A., & Schaumann, R. (1993). Highly linear voltage-controlled CMOS transconductors. IEEE Transactions on Circuits and Systems Part I: Fundamental Theory and Applications, 40(4), 258–262.

    Article  Google Scholar 

  4. Bult, K., & Wallinga, W. (1986). A CMOS four-quadrant analog multiplier. IEEE Journal of Solid-State Circuits, SC-21(3), 430–435.

    Article  Google Scholar 

  5. Seevinck, E., & Wassenaar, R. F. (1987). A versatile CMOS linear transconductor/square-law function circuit. IEEE Journal of Solid-State Circuits, SC-22(3), 366–377.

    Article  Google Scholar 

  6. Nedungadi, A., & Viswanathan, T. R. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, CAS-31(10), 891–894.

    Article  Google Scholar 

  7. Sodini, C. G., Ko, P. K., & Moll, J. L. (1984). The effect of high field on MOS device and circuit performance. IEEE Transactions on Electron Devices, ED-31(10), 1386–1393.

    Article  Google Scholar 

  8. Zarabadi, S. R., & Ismail, M. (1994). Linear voltage to current converter including feedback network. US Patent, 5317279.

  9. Ibaragi, E., Hyogo, A., & Seikine, K. (1998). A novel CMOS OTA free from mobility degradation effect. In Proc. 1988 IEEE Asia Pacific Conference of Circuit and Systems, pp. 241–244.

  10. Matsumoto, F., Onizawa, K., Nakamura, S., Takeuchi, H., & Noguchi, Y. (2009). A new linear transconductor for gyrator-type active filters. In ISPACS 2009, TA2-C-1, Dec 2009, pp. 272–275.

  11. Tanimoto, H., Koyama, M., & Yoshida, Y. (1991). Realization of a 1-V active filter using a linearization technique employing plurality of emitter-coupled pairs. IEEE Journal of Solid-State Circuits, 26, 937–945.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujihiko Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tongpoon, P., Matsumoto, F., Takeuchi, H. et al. A novel design of local-feedback MOS transconductor using techniques for cancellation of mobility degradation and linearization of differential output current characteristic. Analog Integr Circ Sig Process 72, 565–574 (2012). https://doi.org/10.1007/s10470-011-9783-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9783-6

Keywords

Navigation