Skip to main content
Log in

Ideal representation of Reed–Solomon and Reed–Muller codes

  • Published:
Algebra and Logic Aims and scope

Reed–Solomon codes and Reed–Muller codes are represented as ideals of the group ring S = QH of an elementary Abelian p-group H over a finite field Q = \( {\mathbb{F}_q} \) of characteristic p. Such representations for these codes are already known. Our technique differs from the previously used method in the following. There, the codes in question were represented as kernels of some homomorphisms; in other words, these were defined by some kind of parity-check relations. Here, we explicitly specify generators for the ideals presenting the codes. In this case Reed–Muller codes are obtained by applying the trace function to some sums of one-dimensional subspaces of Q S in a fixed set of q such subspaces, whose sums also present Reed–Solomon codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Assmus, Jr. and J. D. Key, “Polynomial codes and finite geometries,” in Handbook of Coding Theory, Vol. 1, Pt. 1, Algebraic Coding, V. S. Pless and W. Cary Huffman (eds.), Elsevier, Amsterdam (1998), pp. 1269-1343.

    Google Scholar 

  2. P. Charpin, “Les codes de Reed–Solomon en tant qu’ideáux d’une algèbre modulaire,” C. R. Acad. Sci. Paris., Sér. I, Math., 294, 597-600 (1982).

    MathSciNet  MATH  Google Scholar 

  3. P. Charpin, “Une description des codes de Reed–Solomon dans une algèbre modulaire,” C. R. Acad. Sci. Paris., Sér. I, Math., 299, 779-782 (1984).

    MathSciNet  MATH  Google Scholar 

  4. P. Landrock and O. Manz, “Classical codes as ideals in group algebras,” Des., Codes Crypt., 2, No. 3, 273-285 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Couselo, S. González, V. Markov, C. Martinez, and A. Nechaev, “Some constructions of linearly optimal group codes,” Lin. Alg. Appl., 433, No. 2, 356-364 (2010).

    Article  MATH  Google Scholar 

  6. R. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Wiley, New York (1962).

    MATH  Google Scholar 

  7. J. Lambeck, Lectures on Rings and Modules, Blaisdell, London (1966).

    Google Scholar 

  8. W. Heise and P. Quattrocchi, Informations- und Codierungstheorie, Springer, Berlin (1995).

    Book  MATH  Google Scholar 

  9. J. H. van Lint, Introduction to Coding Theory, Grad. Texts Math., 86, Springer, New York (1982).

    MATH  Google Scholar 

  10. F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North Holland Mathematical Library, 16, Elsevier (1988).

  11. V. N. Sachkov, Combinatorial Methods in Discrete Mathematics [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  12. R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, Mass. (1983).

    MATH  Google Scholar 

  13. M. M. Glukhov, V. P. Elizarov, and A. A. Nechaev, Algebra [in Russian], Vol. 2, Gelios ARV, Moscow (2003).

    Google Scholar 

  14. S. D. Berman, “On the theory of group codes,” Kibernetika, 3, 31-39 (1967).

    Google Scholar 

  15. P. Charpin, “Codes idéaux de certaines alg`ebres modulaires,” Thèse de 3ème cycle, Univ. Paris VII (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Couselo.

Additional information

(V. T. Markov) Supported by RFBR, grant No. 11-01-00794-a.

(C. Martínez) Supported by MTM2010-18370-C04-01 grant.

(A. A. Nechaev) Supported by the Grants Council (under RF President) for State Aid of Leading Scientific Schools, grants NSh-8.2010.10 and NSh-6260.2012.10.

Translated from Algebra i Logika, Vol. 51, No. 3, pp. 297-320, May-June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couselo, E., González, S., Markov, V.T. et al. Ideal representation of Reed–Solomon and Reed–Muller codes. Algebra Logic 51, 195–212 (2012). https://doi.org/10.1007/s10469-012-9183-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10469-012-9183-8

Keywords

Navigation