Skip to main content
Log in

Predictive models for biomass and carbon stock estimation in Psidium guajava on bouldery riverbed lands in North-Western Himalayas, India

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Psidium guajava Linnaeus., popularly known as ‘Apple of Tropics’ is one of the major fruit crops undertaken on the bouldery riverbed lands of North-Western Himalayan region. Different predictive models were fitted to establish a functional relationship between biomass and collar diameter (CD) of the tree. Out of seven different models attempted viz, Monomolecular, Logistic, Gompetz, Allometric, Rechards, Chapman and Linear, Allometric model (Y = a Xb where Y = total biomass, X = collar diameter, a and b = parameter estimates) fulfills the validation criteria to the best possible extent and is considered as best performing. Allometric model has been fitted to find the relationship between biomass of different tree components and collar diameter. All the equations indicated high correlation between biomass and collar diameter and the R2 values for the fitted functions varied from 0.89 to 0.99. The calculated t-statistic values for all the components found to be non-significant (p > 0.05) which clearly reveals the validity and reliability of the model. The developed allometric models were used to estimate the biomass and carbon stocks of P. guajava plantations of the study site. The estimated total biomass varied from 1.43 Mg ha−1 in 4 year to 40.54 Mg ha−1 in 14 year old plantation. Mitigated carbon varied from 0.26 in 4 year to 7.75 Mg ha−1 in 14 year of plantation. The total biomass carbon stocks varied from 0.48 Mg ha−1 (4 year) to 13.66 Mg ha−1 (14 year) guava plantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajit DK, Das OP, Chaturvedi Jabeen Nighat, Dhyani SK (2011) Predictive models for dry weight estimation of above and below ground biomass components of Populus deltoides in India: development and comparative diagnosis. Biomass Bioenergy 35(1145):1152

    Google Scholar 

  • Araujo TM, Higuchi N, Carvalho JA (1999) Comparison of formulae for biomass content determination in a tropical rain forest in the state of Para, Brazil. For Ecol Manag 17:43–52

    Article  Google Scholar 

  • Arora G, Chaturvedi S, Kaushal R, Nain A, Tewari S, Alam NM, Chaturvedi OP (2013) Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk J Agric For 38:550–560

    Article  Google Scholar 

  • Bargali SS, Singh SP, Singh R (1992) Structure and function of an age series of eucalyptus plantations in central Himalaya. I Dry matter dynamics. Ann Bot 69:405–411

    Article  Google Scholar 

  • Basuki TM, Vanlake PE, Skidmore AK, Hussin YA (2009) Allometric equations for estimating the aboveground bio-mass in tropical lowland Dipterocarp forests. For Ecol Manage 257:1684–1694

    Article  Google Scholar 

  • Black CA (1965) Methods of soil analysis. American Society of Agronomy, Part I, Madison WI

    Google Scholar 

  • Bohre P, Chaubey OP, Singhal P (2012) Biomass accumulation and carbon sequestration in Dalbergia sissoo Roxb. Int J Bio-Sci Bio-Technol 4(3):29–44

    Google Scholar 

  • Bolin BBR, Doos J Jager, Warrick R (1986) The greenhouse effect, climatic change and ecosystems. SCOPE 29. Wiley, Chichester, pp 93–155

    Google Scholar 

  • Canadell JG, Pataki D, Gifford R, Houghton RA, Lou Y, Raupach MR, Smith P, Steffen W (2007) In: Canadell JG, Pataki D, Pitelka L (eds) Terrestrial Ecosystems in a Changing World, (IGBP Series). Springer, Heidelberg, pp 59–78

    Chapter  Google Scholar 

  • Chauhan SK, Gupta N, Ritu S Yadav, Chauhan R (2009) Biomass and carbon allocation in different parts of agroforestry tree species. Indian For 135:981–993

    Google Scholar 

  • Chavan BL, Rasal GB (2012) Total sequestered carbon stock of Mangifera indica. J Environ Earth Sci 2(1):37–49

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1):78–99

    Article  Google Scholar 

  • Goswami S, Verma KS, Kaushal P (2014) Biomass and carbon sequestration in different agroforestry systems of a Western Himalayan watershed. Biol Agric Hortic 30(2):88–96

    Article  Google Scholar 

  • Guo Z, Fang J, Pan Y, Birdsey R (2010) Inventory-based estimates of forest biomass carbon stocks in China: a comparison of three methods. For Ecol Manage 259:1225–1231

    Article  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Indian Horticulture Database (2014) National horticultre board. Ministry of Agricultre, Govt. of India, Gurgaon. http://nhb.gov.in/

  • IPCC (2000) A special report of the intergovernmental panel on climate change. In: Watson RT, Dokken DJ (eds) Land use, land use change and forestry. WMO/UNEP, CUP, Cambridge, pp 25–51

    Google Scholar 

  • IPCC (2006) Guidelines for national greenhouse gas inventories. Agriculture, forestry and other landuse. Inst Glob Environ Strateg, Hayama, Jpn 4:105–125

    Google Scholar 

  • Iqbal MM, Khan O, Jalal-ud-din Khalid Rehman, Munir M (2009) Effect of foliar application of NAA on fruit drop, yield and physic-chemical characteristics of guava (Psidium guajava L.) Red fresh cultivar. J Agric Res 47:259–269

    Google Scholar 

  • Joshi NK, Dhiman RC (1992) Lopping yield studies of Grewia optiva Drummond. Van Vigyan 30(2):80–85

    Google Scholar 

  • Kanime N, Kaushal R, Tewari SK, Raverkar KP, Chaturvedi S, Chaturvedi OP (2013) Biomass production and carbon sequestration in different tree-based systems of central Himalayan Tarai region. For Trees Livelihoods 22(1):38–50

    Article  Google Scholar 

  • Ketterings QM, Coe R, Van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree bio-mass in the mixed secondary forests. For Ecol Manag 146:199–209

    Article  Google Scholar 

  • Koul DN, Panwar P (2008) Prioritizing land-management options for carbon sequestration potential. Curr Sci 95:658–663

    Google Scholar 

  • Lodhiyal N, Lodhiyal LS (2003) Biomass and net primary productivity of Bhabar Shisham forests in central Himalaya, India. For Ecol Manag 176:217–235

    Article  Google Scholar 

  • Lodhiyal LS, Singh RP, Singh SP (1995) Structure and function of an age series of poplar plantation in central Himalaya. I Dry matter dynamics. Ann Bot 76:191–199

    Article  Google Scholar 

  • Lott JE, Howard SB, Black CR, Ong CK (2000) Allometric estimation of aboveground biomass and leaf area in managed Grevillea robusta agroforestry systems. Agrofor Syst 49:1–15

    Article  Google Scholar 

  • Montes N, Gauquelin T, Badri W, Bertaudiere V, Zaoui EH (2000) A non-destructive method for estimating above- ground forest biomass in threatened woodlands. For Ecol Manag 130:37–46

    Article  Google Scholar 

  • Morton JF (1987) Fruits of Warm Climates. Creative Resource System Inc., Miami, FL, pp. 91–102, ISBN: 0-9610184-1-0

  • Mugasha WA, Eid T, Bollandsas OM, Malimbwi RE, Chamshama SAO, Zahabu E, Katani JZ (2013) Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For Ecol Manag 310:87–101

    Article  Google Scholar 

  • Nabuurs GJ, Mohren YG (1995) Modelling analysisof potential carbon sequestration in selected forest types. Can J For Res 25(7):1157–1172

    Article  CAS  Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Plant Nutri Soil Sci 172:10–23

    Article  CAS  Google Scholar 

  • Nath AJ, Das G, Das AK (2009) Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenerg 33:1188–1196

    Article  Google Scholar 

  • Newaj Ram (2014) Biomass and carbon stock in trees grown in agroforestry under semi-arid regions of Central India. Paper presented in World Congress on Agroforestry at Vigyan Bhavan and Kempinski Ambience on 14 February 2014 Delhi, India. WCA 2014-044

  • NOAA (2014) National Oceanic and Atmospheric Administration website: http://www.esrl.noaa.gov/gmd/ccgg/trends/. Assessed 01 Aug 2014

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and Southern Canada. Agr Ecosyst Environ 104:359–377

    Article  CAS  Google Scholar 

  • Palm CA, Tomich T, Van Noordwijk M, Vosti S, Alegre J, Gockowski J, Verchot L (2004) Mitigating GHG emissions in the humid tropics: case studies from the Alternatives to Slash-and-Burn Program. ASB Environ Dev Sust 6:145–162

    Article  Google Scholar 

  • Phani Kumar G, Pal Murugan M, Murkute AA, Singh S (2010) A carbon sequestration strategy involving temperate fruit crops in the trans-Himalayan region. J Hortic Sci Biotechnol 85(5):405–409

    Article  Google Scholar 

  • Post WM, Pengh TH, Emanuel W, King AW, Dale VH, Delnglis (1990) The global carbon cycle. Atmos Sci 78:310–326

    Google Scholar 

  • Raizada A, Jayaprakash J, Rathore AC, Tomar JMS (2013) Distribution of fine root biomass of fruit and forest tree species raised on old river bed lands in the North West Himalaya. Trop Ecol 54(2):251–261

    Google Scholar 

  • Rathore AC, Lal H, Jayaprakash J, Chaturvedi OP (2011) Productivity evaluation of Indian gooseberry cultivars on degraded lands under rainfed condition of North West Himalaya. Indian J Soil Conserv 39(1):63–66

    Google Scholar 

  • Rathore AC, Raizada A, Jayaprakash J, Sharda VN (2012) Impact of chilling injury on common fruit plants in the Doon Valley. Curr Sci 102(8):1107–1111

    Google Scholar 

  • Rathore AC, Saroj PL, Lal H, Sharma NK, Jayaprakash J, Chaturvedi OP, Raizada A, Tomar JMS, Dogra P (2013) Performance of mango based agri-horticultural models under rainfed situation of North Western Himalaya, India. Agrofor Syst 39(1):63–66. doi:10.1007/s10457-013-9646-5

    Google Scholar 

  • Rathore AC, Lal H, Sharma NK, Jayaprakash J, Mehta H, chaturvedi OP (2014) Livelihood security through Litchi (Litchi chinensis L.)-based agri-horticultural models for resource-poor communities of Indian Sub-Himalaya. Curr Sci 106(11):1081–1484

    Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G, Christopher BF (2007) Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci 14:10288–10293

    Article  Google Scholar 

  • Ravindranath NH, Somasekhar BS, Gadgil M (1997) Carbon flows in Indian forest. Clim Chang 35:297–320

    Article  CAS  Google Scholar 

  • Rizvi RH, Dhyani SK, Yadav RS, Singh R (2011) Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Curr Sci 100(5):736–742

    CAS  Google Scholar 

  • Segura M, Kanninen M, Suarez D (2006) Allometric models for estimating aboveground biomass of shad trees and coffee bushes grown together. Agrofor Syst 68:143–150

    Article  Google Scholar 

  • Singh P, Lodhiyal LS (2009) Biomass and carbon allocation in 8-year-old Poplar (Populus deltoides Marsh) plantation in tarai agroforestry systems of Central Himalaya, India. New York Sci J 2:49–53

    Google Scholar 

  • Singh B, Mishra PN (1995) Biomass, energy content and fuel wood properties of Populus deltoides clones raised in north Indian plains. Indian J For 18(4):278–284

    Google Scholar 

  • Somarriba E (1985) Arboles de guayaba (Psidium guajava L.) en pastizales. 1. Producion de fruta y potencial de dispersion de semillas. Turrialba 35(3):289–295

    Google Scholar 

  • Updegraff K, Baughman MJ, Taff SJ (2004) Environmental benefits of cropland conversion to hybrid poplar: economic and policy considerations. Biomass Bioenerg 27:411–428

    Article  Google Scholar 

  • Verma A, Kaushal R, Alam NM, Mehta H, Chaturvedi OP, Mandal D, Tomar JMS, Rathore AC, Singh C (2014) Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor syst 88:895–905

    Article  Google Scholar 

  • Veronica G, Luisa PP, Gerardo R (2010) Allometric relations for biomass partitioning of Nothofagus Antarctica trees of different crown classes over a site quality gradient. For Ecol Manag 259:1118–1126

    Article  Google Scholar 

  • Walkley AJ, Black IA (1934) An examination of the Degtareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang X, Feng Z (1995) Atmospheric carbon sequestration through agroforestry in China. Energy 20:117–121

    Article  CAS  Google Scholar 

  • Watson RT, Zinyowera MC, Moss RH (1998) The regional impacts of climate change. An assessment of vulnerability. A special report by the Intergovernmental Pannel on Climate Change, Geneva

Download references

Acknowledgments

The authors are thankful to Director Indian Institute of Soil and Water Conservation, Dehradun, India for providing necessary facilities to carry out the study. The help rendered by Mr. Chatar Singh and Dr. Gambhir Singh in data collection and soil samples analysis is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Rathore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, A.C., Kumar, A., Tomar, J.M.S. et al. Predictive models for biomass and carbon stock estimation in Psidium guajava on bouldery riverbed lands in North-Western Himalayas, India. Agroforest Syst 92, 171–182 (2018). https://doi.org/10.1007/s10457-016-0023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-016-0023-z

Keywords

Navigation