Skip to main content
Log in

High-frequency callus organogenesis, large-scale cultivation and assessment of clonal fidelity of regenerated plants of Curcuma caesia Roxb., an important source of camphor

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

An efficient in vitro propagation protocol has been standardized for Curcuma caesia Roxb., an important source of camphor, using bud- and leaf-derived callus. The optimum response of 84 and 71 % callus induction was obtained when bud and leaf segment explants were cultured on Murashige and Skoog (MS) medium supplemented with 6.7 µM 2, 4-dichlorophenoxyacetic acid (2, 4-D) and 2.7 µM naphthalene acetic acid (NAA). The white, friable, organogenic calli were subcultured on MS medium supplemented with 6.8 µM thidiazuron (TDZ) and 1.6 µM NAA for shoot induction. On this medium, 90 % of the bud-derived calli responded with an average number of 16.2 shoots per culture. Comparatively, bud-derived calli demonstrated a better regeneration response than leaf calli. In vitro rooting of shoots was also obtained on the regeneration medium. The rooted shoots were successfully hardened and transferred to field conditions. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analysis revealed no evidence of genetic variation in all 22 plants established from the callus with the parental plant, suggesting this protocol could be used for large-scale true-to-type propagation and multiplication of elite clones of C. caesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

N6-benzylaminopurine

2, 4-D:

2, 4-Dichlorophenoxyacetic acid

FW:

Fresh weight

Kn:

Kinetin

MS:

Murashige and Skoog medium

NAA:

Naphthalene acetic acid

RAPD:

Random amplified polymorphic DNA

TDZ:

Thidiazuron

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Faisal M, Anis M, Aref IM (2010) In vitro callus induction and plant regeneration from leaf explants of Ruta graveolens L. South Afr J Bot 76:597–600

    Article  CAS  Google Scholar 

  • Amalraj VA, Velayudhan KC, Muralidharan VK (1989) A note on the anomalous flowering behaviour in Curcuma caesia (Zingiberaceae). J Bombay Nat Hist Soc 86:278–279

    Google Scholar 

  • Arulmozhi DK, Sridhar N, Veeranjaneyulu A, Arora SK (2006) Preliminary mechanistic studies on the smooth muscle relaxant effect of hydroalcoholic extract of Curcuma caesia. J Herb Pharmacother 6:117–124

    Article  CAS  PubMed  Google Scholar 

  • Bairu MW, Fennell CW, van Staden J (2006) The effect of plant growth regulators on somaclonal variation in Cavendish banana (Musa AAA cv. ‘Zelig’). Sci Hortic 108:347–351

    Article  CAS  Google Scholar 

  • Banerjee A, Nigam SS (1976) Antifungal activity of the essential oil of Curcuma caesia Roxb. Indian J Med Res 64:1318–1321

    CAS  PubMed  Google Scholar 

  • Bharalee R, Das A, Kalita MC (2005) In vitro clonal propagation of Curcuma caesia Roxb and Curcuma zedoaria Rosc from rhizome bud explants. J Plant Biochem Biotechnol 14:61–63

    Article  Google Scholar 

  • Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87:44–53

    CAS  Google Scholar 

  • Cheruvathur MK, Thomas TD (2011) An efficient plant regeneration system through callus for Pseudarthria viscida (L.) Wright and Arn., a rare ethnomedicinal herb. Physiol Mol Biol Plant 17:395–401

    Article  CAS  Google Scholar 

  • Cheruvathur MK, Thomas TD (2014) Shoot organogenesis from root-derived callus of Rhinacanthus nasutus (L.) Kurz. and assessment of clonal fidelity of micropropagted plants using RAPD analysis. Appl Biochem Biotechnol 172:1172–1182

    Article  CAS  PubMed  Google Scholar 

  • Cheruvathur MK, Abraham J, Thomas TD (2013) Plant regeneration through callus organogenesis and true-to-type conformity of plants by RAPD analysis in Desmodium gangeticum (Linn.) DC. Appl Biochem Biotechnol 169:1799–1810

    Article  CAS  PubMed  Google Scholar 

  • Craker LE, Simon JE (1996) Herb, spices and medicinal plants: recent advances in botany, horticulture and pharmacology. Food Products Press, New York

    Google Scholar 

  • Deroles SC, Seelye JF, Javellana J, Mullan AC (2010) In vitro propagation of Sandersonia aurantiaca Hook using thidiazuron. Plant Cell Tissue Organ Cult 102:115–119

    Article  Google Scholar 

  • Dohroo NP (2007) Diseases of Turmeric. In: Ravindran PN, Babu KN, Sivaraman K (eds) Turmeric: the genus Curcuma. CRC press, Boca Raton, pp 155–168

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Ghaderi N, Jafari M (2014) Efficient plant regeneration, genetic fidelity and high-level accumulation of two pharmaceutical compounds in regenerated plants of Valeriana officinalis L. South Afr J Bot 92:19–27

    Article  CAS  Google Scholar 

  • Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011) Thidiazuron: a multi-dimensional plant growth regulator. Afr J Biotechnol 10:8984–9000

    CAS  Google Scholar 

  • He R, Gang DR (2014) Somatic embryogenesis and Agrobacterium-mediated transformation of turmeric (Curcuma longa). Plant Cell Tiss Organ Cult 116:333–342

    Article  CAS  Google Scholar 

  • Hossain A, Konisho M, Minami K, Nemoto K (2003) Somaclonal variation of regenerated plants in chili pepper (Capsicum annuum L.). Euphytica 130:233–239

    Article  Google Scholar 

  • Jayaprakasha GK, Rao LJ, Sakariah KK (2006) Antioxidant activities of curcumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem 98:720–724

    Article  CAS  Google Scholar 

  • Karmakar I, Saha P, Neelanjan S (2011a) Neuropharmacological assessment of Curcuma caesia rhizome in experimental animal models. Orient Pharm Exp Med 11:251–255

    Article  Google Scholar 

  • Karmakar I, Dolai N, Saha P, Sarkar N, Bala A, Haldar PK (2011b) Scavenging activity of Curcuma caesia rhizome against reactive oxygen and nitrogen species. Orient Pharm Exp Med 11:221–228

    Article  Google Scholar 

  • Karmakar I, Saha P, Neelanjan S, Bhattacharya S, Haldar PK (2011c) Neuropharmacological assessment of Curcuma caesia rhizome in experimental animal models. Orient Pharm Exp Med 11:251–255

    Article  Google Scholar 

  • Karmakar I, Dolai N, Kumar RBS, Kar B, Roy SN, Haldar PK (2013) Antitumor activity and antioxidant property of Curcuma caesia against Ehrlich’s ascites carcinoma bearing mice. Pharm Biol 51:753–759

    Article  PubMed  Google Scholar 

  • Kumar GK, Thomas TD (2012) High frequency somatic embryogenesis and synthetic seed production in Clitoria ternatea Linn. Plant Cell Tissue Organ Cult 110:141–151

    Article  Google Scholar 

  • Lanham PG, Brenner RM (1999) Genetic characterization of gooseberry (Ribes grossularia subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers. J Hortic Sci Bioltechnol 74:361–366

    CAS  Google Scholar 

  • Lo-apirukkul S, Jenjittikul T, Saralamp P, Prathanturarug S (2012) Micropropagation of a Thai medicinal plant for women’s health, Curcuma comosa Roxb., via shoot and microrhizome inductions. J Nat Med 66:265–270

    Article  CAS  PubMed  Google Scholar 

  • Loc NH, Duc DT, Kwon TH, Yang MS (2005) Micropropagation of zedoary (Curcuma zedoaria Roscoe)—a valuable medicinal plant. Plant Cell Tissue Organ Cult 81:119–122

    Article  CAS  Google Scholar 

  • Lowe AJ, Hanotte O, Guarino L (1996) Standardization of molecular genetic techniques for the characterization of germplasm collections: the case of random amplified polymorphic DNA (RAPD). Plant Gen Res News Lett 107:50–54

    Google Scholar 

  • Maheshwari RK, Singh AK, Gaddipati J, Smimal RC (2006) Multiple biological activities of Curcumin: a short review. Life Sci 78:208–217

    Article  Google Scholar 

  • Mei FY (2012) In vitro regeneration of Kunyit hitam (Curcuma caesia ROXB.). Project submitted in fulfilment of the requirements for the Degree of Bachelor of Science with honours. Faculty of Resource Science and Technology, University of Malaysia Sarawak, Malaysia

  • Mohanty S, Panda MK, Subudhi E, Nayak S (2008) Plant regeneration from callus culture of Curcuma aromatica and in vitro detection of somaclonal variation through cytophotometric analysis. Biol Plant 52:783–786

    Article  Google Scholar 

  • Mohanty S, Joshi RK, Subudhi E, Sahoo S, Nayak S (2010) Assessment of genetic stability of micropropagated Curcuma caesia through cytophotometric and molecular analysis. Cytologia 75:73–81

    Article  CAS  Google Scholar 

  • Mukhri T, Yamaguchi H (1986) In vitro plant multiplication from rhizomes of turmeric (Curcuma domestica Val.) and Ternoe. Lawak (C. xanthorrhiza Roxb.). Plant Tissue Cult Lett 3:28–30

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nitnaware KM, Naik DG, Nikam TD (2011) Thidiazuron-induced shoot organogenesis and production of hepatoprotective lignan phyllanthin and hypophyllanthin in Phyllanthus amarus. Plant Cell Tissue Organ Cult 104:101–110

    Article  CAS  Google Scholar 

  • Paliwal P, Pancholi SS, Patel RK (2011) Pharmacognostic parameters for evaluation of the rhizomes of Curcuma caesia. J Adv Pharma Technol Res 2:56–61

    Article  Google Scholar 

  • Piovan A, Caniato R, Cappelletti EM, Filippini R (2010) Organogenesis from shoot segments and via callus of endangered Kosteletzkya pentacarpos (L.) Ledeb. Plant Cell Tissue Organ Cult 100:309–315

    Article  Google Scholar 

  • Pourhosseini L, Kermani MJ, Habashi AA, Khalighi A (2013) Efficiency of direct and indirect shoot organogenesis in different genotypes of Rosa hybrid. Plant Cell Tissue Organ Cult 112:101–108

    Article  CAS  Google Scholar 

  • Prakash S, Elangomathavan R, Seshadri S, Kathiravan K, Ignacimuthu S (2004) Efficient regeneration of Curcuma amada Roxb. plantlets from rhizome and leaf sheath explants. Plant Cell Tissue Organ Cult 78:159–165

    Article  CAS  Google Scholar 

  • Rogers SO, Benedich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperroort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, London, pp 1–8

    Google Scholar 

  • Sarangthem K, Haokip MJ (2010) Bioactive components in Curcuma caesia Roxb. grown in Manipur. Bioscan 5:113–115

    CAS  Google Scholar 

  • Sasikumar B (2005) Genetic resources of Curcuma: diversity, characterization and utilization. Plant Genet Resour 3:230–251

    Article  CAS  Google Scholar 

  • Shahinozzaman M, Ferdous MM, Faruq M, Azad M, Amin MN (2013) Micropropagation of black turmeric (Curcuma caesia Roxb.) through in vitro culture of rhizome bud explants. J Cent Eur Agric 14:110–115

    Article  Google Scholar 

  • Shilpha J, Silambarasan T, Virgin Largia MJ, Ramesh M (2014) Improved in vitro propagation, solasodine accumulation and assessment of clonal fidelity in regenerants of Solanum trilobatum L. by flow cytometry and SPAR methods. Plant Cell Tissue Organ Cult 117:125–129

    Article  CAS  Google Scholar 

  • Shirgurkar MV, John CK, Nadgauda RS (2001) Factors affecting in vitro microrhizome production in turmeric. Plant Cell Tissue Organ Cult 64:5–11

    Article  CAS  Google Scholar 

  • Singh V, Jain AP (2003) Ethnobotany and medicinal plants of India and Nepal. Scientific Publishers, Jodhpur, pp 124–128

    Google Scholar 

  • Sun YL, Hong SK (2010) Effects of plant growth regulators and l-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.). Plant Cell Tissue Organ Cult 100:317–328

    Article  CAS  Google Scholar 

  • Thomas TD, Hoshino Y (2011) Optimizing embryo and shoot tip derived callus production and high frequency plant regeneration in the model grass Brachypodium distachyon (L.) P. Beauv. Plant Biosyst 145:924–930

    Article  Google Scholar 

  • Thomas TD, Puthur JT (2004) Thidiazuron induced high frequency shoot organogenesis in callus from Kigelia pinnata L. Bot Bull Acad Sin 45:307–314

    CAS  Google Scholar 

  • Wang WG, Wang SH, Wu XA, Jin XY, Chen F (2007) High frequency plantlet regeneration from callus and artificial seed production of rock plant Pogonatherum paniceum (Lam.) Hack. (Poaceae). Sci Hortic 113:196–201

    Article  CAS  Google Scholar 

  • Wani M, Pande S, More N (2010) Callus induction studies in Tridax procumbens L. Int J Biotechnol 2:11–14

    Article  Google Scholar 

  • Williams JGK, Kubelik AR, Liva KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res 18:6531–6535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yadav K, Kumar S, Singh N (2014) Genetic fidelity assessment of micropropagated Spilanthes acmella (L.) Murr. by RAPD and ISSR markers assay. Indian J Biotechnol 13:274–277

    CAS  Google Scholar 

  • Zhang S, Liua N, Sheng A, Ma G, Wu G (2011) Direct and callus-mediated regeneration of Curcuma soloensis Valeton (Zingiberaceae) and ex vitro performance of regenerated plants. Sci Hortic 130:899–905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Principal, St. Thomas College, Palai, for providing the necessary facilities.

Conflict of interest

The authors declare that they have no conflicts of interest concerning this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Dennis Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, S., Thomas, T.D. High-frequency callus organogenesis, large-scale cultivation and assessment of clonal fidelity of regenerated plants of Curcuma caesia Roxb., an important source of camphor. Agroforest Syst 89, 779–788 (2015). https://doi.org/10.1007/s10457-015-9811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-015-9811-0

Keywords

Navigation