Skip to main content

Advertisement

Log in

Plants and their active compounds: natural molecules to target angiogenesis

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Angiogenesis, or new blood vessel formation, is an important process in the pathogenesis of several diseases and thus has been targeted for the prevention and treatment for many disorders. However, the anti-angiogenic agents that are currently in use are mainly synthetic compounds and humanized monoclonal antibodies, which are either expensive or toxic, thereby limiting their use in many patients. Therefore, it is necessary to identify less toxic, inexpensive, novel and effective anti-angiogenic molecules. Several studies have indicated that natural plant products can meet these criteria. In this review, we discuss the anti-angiogenic properties of natural compounds isolated from plants and the molecular mechanisms by which these molecules act. Finally, we summarize the advantages of using plant products as anti-angiogenic agents. Compared with currently available anti-angiogenic drugs, plant products may not only have similar therapeutic potential but are also inexpensive, less toxic, and easy to administer. However, novel and effective strategies are necessary to improve their bioavailability for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674

    Article  CAS  PubMed  Google Scholar 

  2. Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584

    Article  CAS  PubMed  Google Scholar 

  3. Paleolog EM (2002) Angiogenesis in rheumatoid arthritis. Arthritis Res 4(Suppl 3):S81–S90

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heidenreich R, Rocken M, Ghoreschi K (2009) Angiogenesis drives psoriasis pathogenesis. Int J Exp Pathol 90(3):232–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    Article  CAS  PubMed  Google Scholar 

  6. Folkman J (1996) Fighting cancer by attacking its blood supply. Sci Am 275(3):150–154

    Article  CAS  PubMed  Google Scholar 

  7. Al-Husein B, Abdalla M, Trepte M, Deremer DL, Somanath PR (2012) Antiangiogenic therapy for cancer: an update. Pharmacotherapy 32(12):1095–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kubota Y (2012) Tumor angiogenesis and anti-angiogenic therapy. Keio J Med 61(2):47–56

    Article  CAS  PubMed  Google Scholar 

  9. Elice F, Rodeghiero F (2012) Side effects of anti-angiogenic drugs. Thromb Res 129(Suppl 1):S50–S53

    Article  CAS  PubMed  Google Scholar 

  10. Samant RS, Shevde LA (2011) Recent advances in anti-angiogenic therapy of cancer. Oncotarget 2(3):122–134

    Article  PubMed  PubMed Central  Google Scholar 

  11. Recio MC, Andujar I, Rios JL (2012) Anti-inflammatory agents from plants: progress and potential. Curr Med Chem 19(14):2088–2103

    Article  CAS  PubMed  Google Scholar 

  12. Tewtrakul S, Subhadhirasakul S (2007) Anti-allergic activity of some selected plants in the Zingiberaceae family. J Ethnopharmacol 109(3):535–538

    Article  PubMed  Google Scholar 

  13. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sagar SM, Yance D, Wong RK (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1. Curr Oncol 13(1):14–26

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wen W, Lu J, Zhang K, Chen S (2008) Grape seed extract inhibits angiogenesis via suppression of the vascular endothelial growth factor receptor signaling pathway. Cancer Prev Res (Phila) 1(7):554–561

    Article  CAS  Google Scholar 

  16. Lu K, Chakroborty D, Sarkar C, Lu T, Xie Z, Liu Z, Basu S (2012) Triphala and its active constituent chebulinic acid are natural inhibitors of vascular endothelial growth factor-a mediated angiogenesis. PLoS One 7(8):e43934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  CAS  PubMed  Google Scholar 

  18. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  19. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M (2006) Angiogenesis in cancer. Vasc Health Risk Manage 2(3):213–219

    Article  CAS  Google Scholar 

  20. Adair TH, Montani JP (2010) Angiogenesis. Integrated systems physiology: from molecule to function to disease. Morgan & Claypool Life Sciences, San Rafael, CA

  21. Gupta K, Zhang J (2005) Angiogenesis: a curse or cure? Postgrad Med J 81(954):236–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bouis D, Kusumanto Y, Meijer C, Mulder NH, Hospers GA (2006) A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 53(2):89–103

    Article  CAS  PubMed  Google Scholar 

  23. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65(10):3967–3979

    Article  CAS  PubMed  Google Scholar 

  24. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235(4787):442–447

    Article  CAS  PubMed  Google Scholar 

  25. Nissim Ben Efraim AH, Levi-Schaffer F (2014) Roles of eosinophils in the modulation of angiogenesis. Chem Immunol Allergy 99:138–154

    Article  CAS  PubMed  Google Scholar 

  26. Riabov V, Gudima A, Wang N, Mickley A, Orekhov A, Kzhyshkowska J (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA (2004) Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56(4):549–580

    Article  CAS  PubMed  Google Scholar 

  28. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    Article  CAS  PubMed  Google Scholar 

  29. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS (2014) Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev 8:CD005139

    PubMed  PubMed Central  Google Scholar 

  30. Hefner L, Gerding H (2014) Intravitreal anti-VEGF treatment of choroidal neovascularization (CNV) in pathological myopia (PM): a review. Klin Monbl Augenheilkd 231(4):414–417

    Article  CAS  PubMed  Google Scholar 

  31. Marinaccio C, Nico B, Maiorano E, Specchia G, Ribatti D (2014) Insights in hodgkin lymphoma angiogenesis. Leuk Res 38(8):857–861

    Article  CAS  PubMed  Google Scholar 

  32. Arevalo JF (2014) Diabetic macular edema: changing treatment paradigms. Curr Opin Ophthalmol 25(6):502–507

    Article  PubMed  Google Scholar 

  33. Bandello F, Casalino G, Loewenstein A, Goldstein M, Pelayes D, Battaglia Parodi M (2014) Pharmacological approach to diabetic macular edema. Ophthalmic Res 51(2):88–95

    Article  CAS  PubMed  Google Scholar 

  34. Olivieri D, Chetta A (2014) Therapeutic perspectives in vascular remodeling in asthma and chronic obstructive pulmonary disease. Chem Immunol Allergy 99:216–225

    Article  CAS  PubMed  Google Scholar 

  35. Lockhart AC, Rothenberg ML, Dupont J, Cooper W, Chevalier P, Sternas L, Buzenet G, Koehler E, Sosman JA, Schwartz LH, Gultekin DH, Koutcher JA, Donnelly EF, Andal R, Dancy I, Spriggs DR, Tew WP (2010) Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol 28(2):207–214

    Article  CAS  PubMed  Google Scholar 

  36. Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545

    CAS  PubMed  Google Scholar 

  37. Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG, Simons JW, Zhong H (2002) Geldanamycin induces degradation of hypoxia-inducible factor 1alpha protein via the proteosome pathway in prostate cancer cells. Cancer Res 62(9):2478–2482

    CAS  PubMed  Google Scholar 

  38. Faruque LI, Lin M, Battistella M, Wiebe N, Reiman T, Hemmelgarn B, Thomas C, Tonelli M (2014) Systematic review of the risk of adverse outcomes associated with vascular endothelial growth factor inhibitors for the treatment of cancer. PLoS One 9(7):e101145

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thulliez M, Angoulvant D, Le Lez ML, Jonville-Bera AP, Pisella PJ, Gueyffier F, Bejan-Angoulvant T (2014) Cardiovascular events and bleeding risk associated with intravitreal antivascular endothelial growth factor monoclonal antibodies: systematic review and meta-analysis. JAMA Ophthalmol 132(11):1317–1326

    Article  PubMed  Google Scholar 

  40. SooHoo JR, Seibold LK, Kahook MY (2014) The link between intravitreal antivascular endothelial growth factor injections and glaucoma. Curr Opin Ophthalmol 25(2):127–133

    Article  PubMed  Google Scholar 

  41. Ishak RS, Aad SA, Kyei A, Farhat FS (2014) Cutaneous manifestations of anti-angiogenic therapy in oncology: review with focus on VEGF inhibitors. Crit Rev Oncol Hematol 90(2):152–164

    Article  PubMed  Google Scholar 

  42. Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD (2015) Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 35(Suppl):S224–S243

    Article  PubMed  PubMed Central  Google Scholar 

  43. Liu RH (2003) Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr 78(3 Suppl):517S–520S

    CAS  PubMed  Google Scholar 

  44. Huang WY, Cai YZ, Zhang Y (2010) Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62(1):1–20

    Article  PubMed  Google Scholar 

  45. Sak K (2012) Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012:282570

    PubMed  PubMed Central  Google Scholar 

  46. Wang CZ, Luo X, Zhang B, Song WX, Ni M, Mehendale S, Xie JT, Aung HH, He TC, Yuan CS (2007) Notoginseng enhances anti-cancer effect of 5-fluorouracil on human colorectal cancer cells. Cancer Chemother Pharmacol 60(1):69–79

    Article  PubMed  Google Scholar 

  47. Sugiyama T, Sadzuka Y (1998) Enhancing effects of green tea components on the antitumor activity of adriamycin against M5076 ovarian sarcoma. Cancer Lett 133(1):19–26

    Article  CAS  PubMed  Google Scholar 

  48. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    CAS  PubMed  Google Scholar 

  49. Fotsis T, Pepper MS, Aktas E, Breit S, Rasku S, Adlercreutz H, Wahala K, Montesano R, Schweigerer L (1997) Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res 57(14):2916–2921

    CAS  PubMed  Google Scholar 

  50. Fotsis T, Pepper M, Adlercreutz H, Hase T, Montesano R, Schweigerer L (1995) Genistein, a dietary ingested isoflavonoid, inhibits cell proliferation and in vitro angiogenesis. J Nutr 125(3 Suppl):790S–797S

    CAS  PubMed  Google Scholar 

  51. Brakenhielm E, Cao R, Cao Y (2001) Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J 15(10):1798–1800

    CAS  PubMed  Google Scholar 

  52. Cao Z, Fang J, Xia C, Shi X, Jiang BH (2004) Trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin Cancer Res 10(15):5253–5263

    Article  CAS  PubMed  Google Scholar 

  53. Jeong SK, Yang K, Park YS, Choi YJ, Oh SJ, Lee CW, Lee KY, Jeong MH, Jo WS (2014) Interferon gamma induced by resveratrol analog, HS-1793, reverses the properties of tumor associated macrophages. Int Immunopharmacol 22(2):303–310

    Article  CAS  PubMed  Google Scholar 

  54. Sartippour MR, Shao ZM, Heber D, Beatty P, Zhang L, Liu C, Ellis L, Liu W, Go VL, Brooks MN (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132(8):2307–2311

    CAS  PubMed  Google Scholar 

  55. Masuda M, Suzui M, Lim JT, Deguchi A, Soh JW, Weinstein IB (2002) Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol 2(6):350–359

    Article  CAS  PubMed  Google Scholar 

  56. Jung YD, Kim MS, Shin BA, Chay KO, Ahn BW, Liu W, Bucana CD, Gallick GE, Ellis LM (2001) EGCG, a major component of green tea, inhibits tumour growth by inhibiting VEGF induction in human colon carcinoma cells. Br J Cancer 84(6):844–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jang JY, Lee JK, Jeon YK, Kim CW (2013) Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer 13:421

    Article  PubMed  PubMed Central  Google Scholar 

  58. Donà M, Dell’Aica I, Calabrese F, Benelli R, Morini M, Albini A, Garbisa S (2003) Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol 170(8):4335–4341

    Article  PubMed  Google Scholar 

  59. Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE (2014) Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials 35(10):3365–3383

    Article  CAS  PubMed  Google Scholar 

  60. Aggarwal BB, Gupta SC, Sung B (2013) Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol 169(8):1672–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E, Byers HR (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6):376–383

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H, Patumraj S (2006) Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc 34(1–2):109–115

    CAS  PubMed  Google Scholar 

  63. Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H, Cao H, Wang L, Chen T (2013) Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One 8(6):e65896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen F, Guo N, Cao G, Zhou J, Yuan Z (2014) Molecular analysis of curcumin-induced polarization of murine RAW264.7 macrophages. J Cardiovasc Pharmacol 63(6):544–552

    Article  CAS  PubMed  Google Scholar 

  65. Gao S, Zhou J, Liu N, Wang L, Gao Q, Wu Y, Zhao Q, Liu P, Wang S, Liu Y, Guo N, Shen Y, Wu Y, Yuan Z (2015) Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. Mol Cell Cardiol 85:131–139

    Article  CAS  Google Scholar 

  66. Fotsis T, Pepper M, Adlercreutz H, Fleischmann G, Hase T, Montesano R, Schweigerer L (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 90(7):2690–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koroma BM, de Juan E Jr (1994) Phosphotyrosine inhibition and control of vascular endothelial cell proliferation by genistein. Biochem Pharmacol 48(4):809–818

    Article  CAS  PubMed  Google Scholar 

  68. Jiang C, Agarwal R, Lu J (2000) Anti-angiogenic potential of a cancer chemopreventive flavonoid antioxidant, silymarin: inhibition of key attributes of vascular endothelial cells and angiogenic cytokine secretion by cancer epithelial cells. Biochem Biophys Res Commun 276(1):371–378

    Article  CAS  PubMed  Google Scholar 

  69. Singh RP, Sharma G, Dhanalakshmi S, Agarwal C, Agarwal R (2003) Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiol Biomark Prev 12(9):933–939

    CAS  Google Scholar 

  70. Tyagi A, Singh RP, Ramasamy K, Raina K, Redente EF, Dwyer-Nield LD, Radcliffe RA, Malkinson AM, Agarwal R (2009) Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappaB and signal transducers and activators of transcription 3. Cancer Prev Res (Phila) 2(1):74–83

    Article  CAS  Google Scholar 

  71. Pili R, Chang J, Partis RA, Mueller RA, Chrest FJ, Passaniti A (1995) The alpha-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Res 55(13):2920–2926

    CAS  PubMed  Google Scholar 

  72. Eun JP, Koh GY (2004) Suppression of angiogenesis by the plant alkaloid, sanguinarine. Biochem Biophys Res Commun 317(2):618–624

    Article  CAS  PubMed  Google Scholar 

  73. Saraswati S, Agrawal SS (2013) Brucine, an indole alkaloid from Strychnos nux-vomica attenuates VEGF-induced angiogenesis via inhibiting VEGFR2 signaling pathway in vitro and in vivo. Cancer Lett 332(1):83–93

    Article  CAS  PubMed  Google Scholar 

  74. Kim GD, Cheong OJ, Bae SY, Shin J, Lee SK (2013) 6″-Debromohamacanthin A, a bis (indole) alkaloid, inhibits angiogenesis by targeting the VEGFR2-mediated PI3K/AKT/mTOR signaling pathways. Mar Drugs 11(4):1087–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Saraswati S, Kanaujia PK, Kumar S, Kumar R, Alhaider AA (2013) Tylophorine, a phenanthraindolizidine alkaloid isolated from Tylophora indica exerts antiangiogenic and antitumor activity by targeting vascular endothelial growth factor receptor 2-mediated angiogenesis. Mol Cancer 12:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lu Q, Lu S, Gao X, Luo Y, Tong B, Wei Z, Lu T, Xia Y, Chou G, Wang Z, Dai Y (2012) Norisoboldine, an alkaloid compound isolated from Radix Linderae, inhibits synovial angiogenesis in adjuvant-induced arthritis rats by moderating Notch1 pathway-related endothelial tip cell phenotype. Exp Biol Med (Maywood) 237(8):919–932

    Article  CAS  Google Scholar 

  77. Stafford SJ, Schwimer J, Anthony CT, Thomson JL, Wang YZ, Woltering EA (2005) Colchicine and 2-methoxyestradiol inhibit human angiogenesis. J Surg Res 125(1):104–108

    Article  CAS  PubMed  Google Scholar 

  78. Albertsson P, Lennernas B, Norrby K (2008) Dose effects of continuous vinblastine chemotherapy on mammalian angiogenesis mediated by VEGF-A. Acta Oncol 47(2):293–300

    Article  CAS  PubMed  Google Scholar 

  79. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S, Samukawa K, Azuma I (1995) Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)-ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 18(9):1197–1202

    Article  CAS  PubMed  Google Scholar 

  80. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I (1994) Inhibition of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 17(5):635–639

    Article  CAS  PubMed  Google Scholar 

  81. Morisaki N, Watanabe S, Tezuka M, Zenibayashi M, Shiina R, Koyama N, Kanzaki T, Saito Y (1995) Mechanism of angiogenic effects of saponin from ginseng Radix rubra in human umbilical vein endothelial cells. Br J Pharmacol 115(7):1188–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Foa R, Norton L, Seidman AD (1994) Taxol (paclitaxel): a novel anti-microtubule agent with remarkable anti-neoplastic activity. Int J Clin Lab Res 24(1):6–14

    Article  CAS  PubMed  Google Scholar 

  83. Escuin D, Kline ER, Giannakakou P (2005) Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1alpha accumulation and activity by disrupting microtubule function. Cancer Res 65(19):9021–9028

    Article  CAS  PubMed  Google Scholar 

  84. Lu K, Basu S (2015) The natural compound chebulagic acid inhibits vascular endothelial growth factor A mediated regulation of endothelial cell functions. Sci Rep 5:9642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chatterjee S, Bhattacharjee B (2012) Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor. Bioinformation 8(25):1249–1254

    Article  PubMed  PubMed Central  Google Scholar 

  86. Siddiqui IA, Adhami VM, Bharali DJ, Hafeez BB, Asim M, Khwaja SI, Ahmad N, Cui H, Mousa SA, Mukhtar H (2009) Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Res 69(5):1712–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang L, Li H, Wang S, Liu R, Wu Z, Wang C, Wang Y, Chen M (2014) Enhancing the antitumor activity of berberine hydrochloride by solid lipid nanoparticle encapsulation. AAPS PharmSciTech 15(4):834–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luo H, Jiang B, Li B, Li Z, Jiang BH, Chen YC (2012) Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int J Nanomedicine 7:3951–3959

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z (2011) Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3(4):1558–1567

    Article  CAS  PubMed  Google Scholar 

  90. Saha SK, Khuda-Bukhsh AR (2013) Molecular approaches towards development of purified natural products and their structurally known derivatives as efficient anti-cancer drugs: current trends. Eur J Pharmacol 714(1–3):239–248

    Article  CAS  PubMed  Google Scholar 

  91. Mori M, Supuran CT (2015) Editorial: challenging organic syntheses and pharmacological applications of natural products and their derivatives. Curr Pharm Des 21(38):5451–5452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institutes of Health [R01DK098045 (S.B) and R01CA169158 (S.B.)]. We apologize to colleagues whose studies were not cited because of space limitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Basu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, K., Bhat, M. & Basu, S. Plants and their active compounds: natural molecules to target angiogenesis. Angiogenesis 19, 287–295 (2016). https://doi.org/10.1007/s10456-016-9512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-016-9512-y

Keywords

Navigation