Skip to main content
Log in

The effects of inflammatory cytokines on lymphatic endothelial barrier function

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Proper lymphatic function is necessary for the transport of fluids, macromolecules, antigens and immune cells out of the interstitium. The lymphatic endothelium plays important roles in the modulation of lymphatic contractile activity and lymph transport, but it’s role as a barrier between the lymph and interstitial compartments is less well understood. Alterations in lymphatic function have long been associated with edema and inflammation although the integrity of the lymphatic endothelial barrier during inflammation is not well-defined. In this paper we evaluated the integrity of the lymphatic barrier in response to inflammatory stimuli commonly associated with increased blood endothelial permeability. We utilized in vitro assays of lymphatic endothelial cell (LEC) monolayer barrier function after treatment with different inflammatory cytokines and signaling molecules including TNF-α, IL-6, IL-1β, IFN-γ and LPS. Moderate increases in an index of monolayer barrier dysfunction were noted with all treatments (20–60 % increase) except IFN-γ which caused a greater than 2.5-fold increase. Cytokine-induced barrier dysfunction was blocked or reduced by the addition of LNAME, except for IL-1β and LPS treatments, suggesting a regulatory role for nitric oxide. The decreased LEC barrier was associated with modulation of both intercellular adhesion and intracellular cytoskeletal activation. Cytokine treatments reduced the expression of VE-cadherin and increased scavenging of β-catenin in the LECs and this was partially reversed by LNAME. Likewise the phosphorylation of myosin light chain 20 at the regulatory serine 19 site, which accompanied the elevated monolayer barrier dysfunction in response to cytokine treatment, was also blunted by LNAME application. This suggests that the lymphatic barrier is regulated during inflammation and that certain inflammatory signals may induce large increases in permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Casley-Smith JR (1968) How the lymphatic system works. Lymphology 1(3):77–80

    PubMed  CAS  Google Scholar 

  2. Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106(5):920–931. doi:10.1161/CIRCRESAHA.109.207274

    Article  PubMed  CAS  Google Scholar 

  3. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24(2):203–215. doi:10.1016/j.immuni.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  4. Angeli V, Randolph GJ (2006) Inflammation, lymphatic function, and dendritic cell migration. Lymphat Res Biol 4(4):217–228. doi:10.1089/lrb 2006.4406

    Article  PubMed  CAS  Google Scholar 

  5. Jakubzick C, Bogunovic M, Bonito AJ, Kuan EL, Merad M, Randolph GJ (2008) Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J Exp Med 205(12):2839–2850. doi:10.1084/jem.20081430

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D’Amore PA, Stein-Streilein J, Losordo DW, Streilein JW (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115(9):2363–2372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Muller WA, Randolph GJ (1999) Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 66(5):698–704

    PubMed  CAS  Google Scholar 

  8. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5(8):617–628. doi:10.1038/nri1670

    Article  PubMed  CAS  Google Scholar 

  9. Skobe M, Detmar M (2000) Structure, function, and molecular control of the skin lymphatic system. J Investig Dermatol Symp Proc 5(1):14–19. doi:10.1046/j.1087-0024.2000.00001.x

    Article  PubMed  CAS  Google Scholar 

  10. Zawieja SD, Wang W, Wu X, Nepiyushchikh ZV, Zawieja DC, Muthuchamy M (2012) Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome. Am J Physiol Heart Circ Physiol 302(3):H643–H653. doi:10.1152/ajpheart.00606.2011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Sessa WC (2009) Molecular control of blood flow and angiogenesis: role of nitric oxide. J Thromb Haemost 7(Suppl 1):35–37

    Article  PubMed  CAS  Google Scholar 

  12. Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner JM, Losordo DW (2002) Divergence of angiogenic and vascular permeability signaling by VEGF: inhibition of protein kinase C suppresses VEGF-induced angiogenesis, but promotes VEGF-induced, NO-dependent vascular permeability. Arterioscler Thromb Vasc Biol 22(6):901–906

    Article  PubMed  CAS  Google Scholar 

  13. Moncada S, Higgs EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21(4):361–374

    Article  PubMed  CAS  Google Scholar 

  14. Davenpeck KL, Gauthier TW, Lefer AM (1994) Inhibition of endothelial-derived nitric oxide promotes P-selectin expression and actions in the rat microcirculation. Gastroenterology 107(4):1050–1058

    PubMed  CAS  Google Scholar 

  15. Krieglstein CF, Anthoni C, Cerwinka WH, Stokes KY, Russell J, Grisham MB, Granger DN (2007) Role of blood- and tissue-associated inducible nitric-oxide synthase in colonic inflammation. Am J Pathol 170(2):490–496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Gasheva OY, Zawieja DC, Gashev AA (2006) Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J Physiol 575(Pt 3):821–832. doi:10.1113/jphysiol.2006.115212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Schmid-Schonbein GW (2012) Nitric oxide (NO) side of lymphatic flow and immune surveillance. Proc Natl Acad Sci U S A 109(1):3–4. doi:10.1073/pnas.1117710109

    Article  PubMed Central  PubMed  Google Scholar 

  18. Wu TF, Carati CJ, Macnaughton WK, von der Weid PY (2006) Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol 291(4):G566–G574. doi:10.1152/ajpgi.0 0058.2006

    Article  PubMed  CAS  Google Scholar 

  19. von der Weid PY, Muthuchamy M (2010) Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology 17(4):263–276. doi: 10.1016

    Google Scholar 

  20. Hayes H, Kossmann E, Wilson E, Meininger C, Zawieja D (2003) Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1(2):101–119

    Article  PubMed  CAS  Google Scholar 

  21. Chakravortty D, Koide N, Kato Y, Sugiyama T, Kawai M, Fukada M, Yoshida T, Yokochi T (2000) Cytoskeletal alterations in lipopolysaccharide-induced bovine vascular endothelial cell injury and its prevention by sodium arsenite. Clin Diagn Lab Immunol 7(2):218–225

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Dudek SM, Munoz NM, Desai A, Osan CM, Meliton AY, Leff AR (2011) Group V phospholipase A2 mediates barrier disruption of human pulmonary endothelial cells caused by LPS in vitro. Am J Respir Cell Mol Biol 44(3):361–368. doi:10.1165/rcmb.2009-0446OC

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Chaitanya GV, Franks SE, Cromer W, Wells SR, Bienkowska M, Jennings MH, Ruddell A, Ando T, Wang Y, Gu Y, Sapp M, Mathis JM, Jordan PA, Minagar A, Alexander JS (2010) Differential cytokine responses in human and mouse lymphatic endothelial cells to cytokines in vitro. Lymphat Res Biol 8(3):155–164. doi:10.1089/lrb2010.0004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Puhlmann M, Weinreich DM, Farma JM, Carroll NM, Turner EM, Alexander HR Jr (2005) Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med 3:37. doi:10.1186/1479-5876-3-37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Bove K, Neumann P, Gertzberg N, Johnson A (2001) Role of ecNOS-derived NO in mediating TNF-induced endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280(5):L914–L922

    PubMed  CAS  Google Scholar 

  26. Breslin JW, Yuan SY, Wu MH (2007) VEGF-C alters barrier function of cultured lymphatic endothelial cells through a VEGFR-3-dependent mechanism. Lymphat Res Biol 5(2):105–113. doi:10.1089/lrb2007.1004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204(10):2349–2362. doi:10.1084/jem.20062596

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Leak LV, Burke JF (1968) Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology 1(2):39–52

    PubMed  CAS  Google Scholar 

  29. Chaitanya GV, Cromer W, Wells S, Jennings M, Mathis JM, Minagar A, Alexander JS (2012) Metabolic modulation of cytokine-induced brain endothelial adhesion molecule expression. Microcirculation 19(2):155–165. doi:10.1111/j.1549-8719.2011.00141.x

    Article  PubMed  CAS  Google Scholar 

  30. Barbieri SS, Weksler BB (2007) Tobacco smoke cooperates with interleukin-1beta to alter beta-catenin trafficking in vascular endothelium resulting in increased permeability and induction of cyclooxygenase-2 expression in vitro and in vivo. Faseb J 21(8):1831–1843. doi:10.1096/fj.06-7557com

    Article  PubMed  CAS  Google Scholar 

  31. Sola-Villa D, Camacho M, Sola R, Soler M, Diaz JM, Vila L (2006) IL-1beta induces VEGF, independently of PGE2 induction, mainly through the PI3-K/mTOR pathway in renal mesangial cells. Kidney Int 70(11):1935–1941

    PubMed  CAS  Google Scholar 

  32. Alexander JS, Chaitanya GV, Grisham MB, Boktor M (2010) Emerging roles of lymphatics in inflammatory bowel disease. Ann N Y Acad Sci 1207(Suppl 1):E75–E85. doi:10.1111/j.1749-6632.2010.05757.x

    Article  PubMed  Google Scholar 

  33. Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH (2007) Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Heart Circ Physiol 293(1):H709–H718. doi:10.1152/ajpheart.00102.2007

    Article  PubMed  CAS  Google Scholar 

  34. Chatterjee V, Gashev AA (2012) Aging-associated shifts in functional status of mast cells located by adult and aged mesenteric lymphatic vessels. Am J Physiol Heart Circ Physiol 303(6):H693–H702. doi:10.1152/ajpheart.00378.2012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Breslin JW (2011) ROCK and cAMP promote lymphatic endothelial cell barrier integrity and modulate histamine and thrombin-induced barrier dysfunction. Lymphat Res Biol 9(1):3–11. doi:10.1089/lrb2010.0016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Nooteboom A, Van Der Linden CJ, Hendriks T (2002) Tumor necrosis factor-alpha and interleukin-1beta mediate endothelial permeability induced by lipopolysaccharide-stimulated whole blood. Crit Care Med 30(9):2063–2068. doi:10.1097/01.CCM.0000021522.67956.E6

    Article  PubMed  CAS  Google Scholar 

  37. Hunziker T, Brand CU, Kapp A, Waelti ER, Braathen LR (1992) Increased levels of inflammatory cytokines in human skin lymph derived from sodium lauryl sulphate-induced contact dermatitis. Br J Dermatol 127(3):254–257

    Article  PubMed  CAS  Google Scholar 

  38. Olszewski WL, Pazdur J, Kubasiewicz E, Zaleska M, Cooke CJ, Miller NE (2001) Lymph draining from foot joints in rheumatoid arthritis provides insight into local cytokine and chemokine production and transport to lymph nodes. Arthritis Rheum 44(3):541–549. doi:10.1002/1529-0131(200103)44:3<541:AID-ANR102>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  39. Glass CA, Harper SJ, Bates DO (2006) The anti-angiogenic VEGF isoform VEGF165b transiently increases hydraulic conductivity, probably through VEGF receptor 1 in vivo. J Physiol 572(Pt 1):243–257

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Cromer W, Jennings MH, Odaka Y, Mathis JM, Alexander JS (2010) Murine rVEGF164b, an inhibitory VEGF reduces VEGF-A-dependent endothelial proliferation and barrier dysfunction. Microcirculation 17(7):536–547

    Google Scholar 

  41. Wu F, Han M, Wilson JX (2009) Tripterine prevents endothelial barrier dysfunction by inhibiting endogenous peroxynitrite formation. Br J Pharmacol 157(6):1014–1023. doi:10.1111/j.1476-5381.2009.00292.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Sawa Y, Ueki T, Hata M, Iwasawa K, Tsuruga E, Kojima H, Ishikawa H, Yoshida S (2008) LPS-induced IL-6, IL-8, VCAM-1, and ICAM-1 expression in human lymphatic endothelium. J Histochem Cytochem 56(2):97–109. doi:10.1369/jhc.7A 7299.2007

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Ghoshal S, Witta J, Zhong J, de Villiers W, Eckhardt E (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50(1):90–97. doi:10.1194/jlr.M800156-JLR200

    Article  PubMed  CAS  Google Scholar 

  44. Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431. doi:10.1038/nature03952

    Article  PubMed  CAS  Google Scholar 

  45. Tharakan B, Hellman J, Sawant DA, Tinsley JH, Parrish AR, Hunter FA, Smythe WR, Childs EW (2011) beta-Catenin Dynamics in the Regulation of Microvascular Endothelial Cell Hyperpermeability. Shock. doi:10.1097/SHK.0b013e318240b564

    Google Scholar 

  46. Ding H, Keller KC, Martinez IK, Geransar RM, zur Nieden KO, Nishikawa SG, Rancourt DE, zur Nieden NI (2012) NO-beta-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation. J Cell Sci 125(Pt 22):5564–5577. doi:10.1242/jcs.081703

    Article  PubMed  CAS  Google Scholar 

  47. Kang DE, Soriano S, Frosch MP, Collins T, Naruse S, Sisodia SS, Leibowitz G, Levine F, Koo EH (1999) Presenilin 1 facilitates the constitutive turnover of beta-catenin: differential activity of Alzheimer’s disease-linked PS1 mutants in the beta-catenin-signaling pathway. J Neurosci 19(11):4229–4237

    PubMed  CAS  Google Scholar 

  48. Soriano S, Kang DE, Fu M, Pestell R, Chevallier N, Zheng H, Koo EH (2001) Presenilin 1 negatively regulates beta-catenin/T cell factor/lymphoid enhancer factor-1 signaling independently of beta-amyloid precursor protein and notch processing. J Cell Biol 152(4):785–794

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Strawitz JG, Eto K, Mitsuoka H, Olney C, Pairent FW, Howard JM (1968) Molecular weight dependence of lymphatic permeability: the concept of regional cancer chemotheraphy by lymphatic perfusion. Microvasc Res 1(1):58–67

    Article  Google Scholar 

  50. Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY (2012) Myosin Light Chain Kinase Signaling in Endothelial Barrier Dysfunction. Med Res Rev. doi:10.1002/med.21270

    PubMed Central  PubMed  Google Scholar 

  51. Yoshikawa H, Takada K, Muranishi S (1984) Molecular weight dependence of permselectivity to rat small intestinal blood-lymph barrier for exogenous macromolecules absorbed from lumen. J Pharmacobiodyn 7(1):1–6

    Article  PubMed  CAS  Google Scholar 

  52. Scallan JP, Huxley VH (2010) In vivo determination of collecting lymphatic vessel permeability to albumin: a role for lymphatics in exchange. J Physiol 588(Pt 1):243–254. doi:10.1113/jphysiol.2009.179622

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Dunworth WP, Fritz-Six KL, Caron KM (2008) Adrenomedullin stabilizes the lymphatic endothelial barrier in vitro and in vivo. Peptides 29(12):2243–2249. doi:10.1016/j.peptides.2008.09.009

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Price GM, Chrobak KM, Tien J (2008) Effect of cyclic AMP on barrier function of human lymphatic microvascular tubes. Microvasc Res 76(1):46–51. doi:10.1016/j.mvr.2008.02.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Hou WH, Liu IH, Tsai CC, Johnson FE, Huang SS, Huang JS (2011) CRSBP-1/LYVE-1 ligands disrupt lymphatic intercellular adhesion by inducing tyrosine phosphorylation and internalization of VE-cadherin. J Cell Sci 124(Pt 8):1231–1244. doi:10.1242/jcs.078154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH grants HL070308, DK099221, HL094269, CA140732 and the Scott & White Wigley award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter E. Cromer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2013_9393_MOESM1_ESM.tif

Supplementary Fig 1 Dose response curves of cytokines tested on RLEC monolayer permeability. Each graph is a single experiment with n = 3. These data along with the literature was used to determine which doses to use for further experiments. (TIFF 23578 kb)

10456_2013_9393_MOESM2_ESM.tif

Supplementary Fig 2 Western blots representative data for β-catenin, VE-cadherin and pMLC20/MLC20 ratios from TNF-α, IL-6, IL-1β, LPS and IFN-γ treated RLECs at 1 hour. (TIFF 12587 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cromer, W.E., Zawieja, S.D., Tharakan, B. et al. The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis 17, 395–406 (2014). https://doi.org/10.1007/s10456-013-9393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9393-2

Keywords

Navigation