Skip to main content

Advertisement

Log in

Sprouty2 expression controls endothelial monolayer integrity and quiescence

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Vascular integrity is fundamental to the formation of mature blood vessels and depends on a functional, quiescent endothelial monolayer. However, how endothelial cells enter and maintain quiescence in the presence of angiogenic factors is still poorly understood. Here we identify the fibroblast growth factor (FGF) antagonist Sprouty2 (Spry2) as a key player in mediating endothelial quiescence and barrier integrity in mouse aortic endothelial cells (MAECs): Spry2 knockout MAECs show spindle-like shapes and are incapable of forming a functional, impermeable endothelial monolayer in the presence of FGF2. Whereas dense wild type cells exhibit contact inhibition and stop to proliferate, Spry2 knockout MAECs remain responsive to FGF2 and continue to proliferate even at high cell densities. Importantly, the anti-proliferative effect of Spry2 is absent in sparsely plated cells. This cell density-dependent Spry2 function correlates with highly increased Spry2 expression in confluent wild type MAECs. Spry2 protein expression is barely detectable in single cells but steadily increases in cells growing to high cell densities, with hypoxia being one contributing factor. At confluence, Spry2 expression correlates with intact cell–cell contacts, whereas disruption of cell–cell contacts by EGTA, TNFα and thrombin decreases Spry2 protein expression. In confluent cells, high Spry2 levels correlate with decreased extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation. In contrast, dense Spry2 knockout MAECs exhibit enhanced signaling by Erk1/2. Moreover, inhibiting Erk1/2 activity in Spry2 knockout cells restores wild type cobblestone monolayer morphology. This study thus reveals a novel Spry2 function, which mediates endothelial contact inhibition and barrier integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936. doi:10.1038/nature04478

    Article  PubMed  CAS  Google Scholar 

  2. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478. doi:10.1038/nrm2183

    Article  PubMed  CAS  Google Scholar 

  3. De Smet F, Segura I, De Bock K, Hohensinner PJ, Carmeliet P (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29(5):639–649. doi:10.1161/ATVBAHA.109.185165

    Article  PubMed  Google Scholar 

  4. Presta M, Dell’Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178. doi:10.1016/j.cytogfr.2005.01.004

    Article  PubMed  CAS  Google Scholar 

  5. Dejana E (2004) Endothelial cell–cell junctions: happy together. Nat Rev Mol Cell Biol 5(4):261–270. doi:10.1038/nrm1357

    Article  PubMed  CAS  Google Scholar 

  6. Murakami M, Simons M (2009) Regulation of vascular integrity. J Mol Med (Berl) 87(6):571–582. doi:10.1007/s00109-009-0463-2

    Article  Google Scholar 

  7. Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221. doi:10.1016/j.devcel.2009.01.004

    Article  PubMed  CAS  Google Scholar 

  8. Vinals F, Pouyssegur J (1999) Confluence of vascular endothelial cells induces cell cycle exit by inhibiting p42/p44 mitogen-activated protein kinase activity. Mol Cell Biol 19(4):2763–2772

    PubMed  CAS  Google Scholar 

  9. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92(2):253–263

    Article  PubMed  CAS  Google Scholar 

  10. Casci T, Vinos J, Freeman M (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96(5):655–665

    Article  PubMed  CAS  Google Scholar 

  11. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N, Krasnow MA, Martin GR (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126(20):4465–4475

    PubMed  CAS  Google Scholar 

  12. Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas P Jr, Crowe DL, Warburton D (1999) Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol 9(4):219–222

    Article  PubMed  CAS  Google Scholar 

  13. Mailleux AA, Tefft D, Ndiaye D, Itoh N, Thiery JP, Warburton D, Bellusci S (2001) Evidence that SPROUTY2 functions as an inhibitor of mouse embryonic lung growth and morphogenesis. Mech Dev 102(1–2):81–94

    Article  PubMed  CAS  Google Scholar 

  14. Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y, Minami Y, Kikuchi A, Maehara Y, Yoshimura A (2007) Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 352(4):896–902. doi:10.1016/j.bbrc.2006.11.107

    Article  PubMed  CAS  Google Scholar 

  15. Mason JM, Morrison DJ, Basson MA, Licht JD (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16(1):45–54. doi:10.1016/j.tcb.2005.11.004

    Article  PubMed  CAS  Google Scholar 

  16. Cabrita MA, Christofori G (2008) Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11(1):53–62. doi:10.1007/s10456-008-9089-1

    Article  PubMed  CAS  Google Scholar 

  17. Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152(5):1087–1098

    Article  PubMed  CAS  Google Scholar 

  18. Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ (2002) Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 16(8):771–780. doi:10.1096/fj.01-0658com

    Google Scholar 

  19. Metzen E, Wolff M, Fandrey J, Jelkmann W (1995) Pericellular PO2 and O2 consumption in monolayer cell cultures. Respir Physiol 100(2):101–106

    Article  PubMed  CAS  Google Scholar 

  20. Schnittler HJ, Puschel B, Drenckhahn D (1997) Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress. Am J Physiol 273(5 Pt 2):H2396–H2405

    PubMed  CAS  Google Scholar 

  21. Goldblum SE, Hennig B, Jay M, Yoneda K, McClain CJ (1989) Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infect Immun 57(4):1218–1226

    PubMed  CAS  Google Scholar 

  22. McKenzie JA, Ridley AJ (2007) Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol 213(1):221–228. doi:10.1002/jcp.21114

    Article  PubMed  CAS  Google Scholar 

  23. Lum H, Del Vecchio PJ, Schneider AS, Goligorsky MS, Malik AB (1989) Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J Appl Physiol 66(3):1471–1476

    Article  PubMed  CAS  Google Scholar 

  24. Gross I, Bassit B, Benezra M, Licht JD (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276(49):46460–46468. doi:10.1074/jbc.M108234200

    Article  PubMed  CAS  Google Scholar 

  25. Guy GR, Jackson RA, Yusoff P, Chow SY (2009) Sprouty proteins: modified modulators, matchmakers or missing links? J Endocrinol 203(2):191–202. doi:10.1677/JOE-09-0110

    Article  PubMed  CAS  Google Scholar 

  26. Anderson K, Nordquist KA, Gao X, Hicks KC, Zhai B, Gygi SP, Patel TB (2011) Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. J Biol Chem 286(49):42027–42036. doi:10.1074/jbc.M111.303222

    Article  PubMed  CAS  Google Scholar 

  27. Ding W, Shi W, Bellusci S, Groffen J, Heisterkamp N, Minoo P, Warburton D (2007) Sprouty2 downregulation plays a pivotal role in mediating crosstalk between TGF-beta1 signaling and EGF as well as FGF receptor tyrosine kinase-ERK pathways in mesenchymal cells. J Cell Physiol 212(3):796–806. doi:10.1002/jcp.21078

    Article  PubMed  CAS  Google Scholar 

  28. Ding W, Warburton D (2008) Down-regulation of Sprouty2 via p38 MAPK plays a key role in the induction of cellular apoptosis by tumor necrosis factor-alpha. Biochem Biophys Res Commun 375(3):460–464. doi:10.1016/j.bbrc.2008.08.037

    Article  PubMed  CAS  Google Scholar 

  29. Lim J, Wong ES, Ong SH, Yusoff P, Low BC, Guy GR (2000) Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J Biol Chem 275(42):32837–32845. doi:10.1074/jbc.M002156200

    Article  PubMed  CAS  Google Scholar 

  30. Fong CW, Leong HF, Wong ES, Lim J, Yusoff P, Guy GR (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278(35):33456–33464. doi:10.1074/jbc.M301317200

    Article  PubMed  CAS  Google Scholar 

  31. Hanafusa H, Torii S, Yasunaga T, Nishida E (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4(11):850–858. doi:10.1038/ncb867

    Article  PubMed  CAS  Google Scholar 

  32. Mason JM, Morrison DJ, Bassit B, Dimri M, Band H, Licht JD, Gross I (2004) Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell 15(5):2176–2188. doi:10.1091/mbc.E03-07-0503

    Article  PubMed  CAS  Google Scholar 

  33. Glienke J, Schmitt AO, Pilarsky C, Hinzmann B, Weiss B, Rosenthal A, Thierauch KH (2000) Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem 267(9):2820–2830

    Article  PubMed  CAS  Google Scholar 

  34. Zhang C, Chaturvedi D, Jaggar L, Magnuson D, Lee JM, Patel TB (2005) Regulation of vascular smooth muscle cell proliferation and migration by human sprouty 2. Arterioscler Thromb Vasc Biol 25(3):533–538. doi:10.1161/01.ATV.0000155461.50450.5a

    Article  PubMed  CAS  Google Scholar 

  35. Pinsky DJ, Yan SF, Lawson C, Naka Y, Chen JX, Connolly ES Jr, Stern DM (1995) Hypoxia and modification of the endothelium: implications for regulation of vascular homeostatic properties. Semin Cell Biol 6(5):283–294

    Article  PubMed  CAS  Google Scholar 

  36. Yan SF, Ogawa S, Stern DM, Pinsky DJ (1997) Hypoxia-induced modulation of endothelial cell properties: regulation of barrier function and expression of interleukin-6. Kidney Int 51(2):419–425

    Article  PubMed  CAS  Google Scholar 

  37. Lampugnani MG, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129(1):203–217

    Article  PubMed  CAS  Google Scholar 

  38. Nyqvist D, Giampietro C, Dejana E (2008) Deciphering the functional role of endothelial junctions by using in vivo models. EMBO Rep 9(8):742–747. doi:10.1038/embor.2008.123

    Article  PubMed  CAS  Google Scholar 

  39. Hewat EA, Durmort C, Jacquamet L, Concord E, Gulino-Debrac D (2007) Architecture of the VE-cadherin hexamer. J Mol Biol 365(3):744–751. doi:10.1016/j.jmb.2006.10.052

    Article  PubMed  CAS  Google Scholar 

  40. Chitaev NA, Troyanovsky SM (1998) Adhesive but not lateral E-cadherin complexes require calcium and catenins for their formation. J Cell Biol 142(3):837–846

    Article  PubMed  CAS  Google Scholar 

  41. Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM (2009) Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335(1):17–25. doi:10.1007/s00441-008-0694-5

    Article  PubMed  Google Scholar 

  42. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A 102(33):11594–11599. doi:10.1073/pnas.0502575102

    Article  PubMed  CAS  Google Scholar 

  43. Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta 1778(3):794–809. doi:10.1016/j.bbamem.2007.09.003

    Article  PubMed  CAS  Google Scholar 

  44. Nelson PJ, Daniel TO (2002) Emerging targets: molecular mechanisms of cell contact-mediated growth control. Kidney Int 61(1 Suppl):S99–S105. doi:10.1046/j.1523-1755.2002.0610s1099.x

    Article  PubMed  Google Scholar 

  45. Tille JC, Wood J, Mandriota SJ, Schnell C, Ferrari S, Mestan J, Zhu Z, Witte L, Pepper MS (2001) Vascular endothelial growth factor (VEGF) receptor-2 antagonists inhibit VEGF- and basic fibroblast growth factor-induced angiogenesis in vivo and in vitro. J Pharmacol Exp Ther 299(3):1073–1085

    PubMed  CAS  Google Scholar 

  46. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141(7):1659–1673

    Article  PubMed  CAS  Google Scholar 

  47. Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM (2001) Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev 15(19):2520–2532. doi:10.1101/gad.914801

    Article  PubMed  CAS  Google Scholar 

  48. Richard DE, Berra E, Pouyssegur J (2000) Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem 275(35):26765–26771. doi:10.1074/jbc.M003325200

    PubMed  CAS  Google Scholar 

  49. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL (2002) Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277(41):38205–38211. doi:10.1074/jbc.M203781200

    Article  PubMed  CAS  Google Scholar 

  50. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703. doi:10.1016/j.cell.2007.06.054

    Article  PubMed  CAS  Google Scholar 

  51. Fong GH (2009) Regulation of angiogenesis by oxygen sensing mechanisms. J Mol Med (Berl) 87(6):549–560. doi:10.1007/s00109-009-0458-z

    Article  CAS  Google Scholar 

  52. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113(4):516–527. doi:10.1172/JCI18420

    PubMed  CAS  Google Scholar 

  53. Shim K, Minowada G, Coling DE, Martin GR (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8(4):553–564. doi:10.1016/j.devcel.2005.02.009

    Article  PubMed  CAS  Google Scholar 

  54. Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11(2):181–190. doi:10.1016/j.devcel.2006.05.014

    Article  PubMed  CAS  Google Scholar 

  55. Peterkova R, Churava S, Lesot H, Rothova M, Prochazka J, Peterka M, Klein OD (2009) Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. J Exp Zool B Mol Dev Evol 312B(4):292–308. doi:10.1002/jez.b.21266

    Article  PubMed  Google Scholar 

  56. Matsumura K, Taketomi T, Yoshizaki K, Arai S, Sanui T, Yoshiga D, Yoshimura A, Nakamura S (2011) Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling. Biochem Biophys Res Commun 404(4):1076–1082. doi:10.1016/j.bbrc.2010.12.116

    Article  PubMed  CAS  Google Scholar 

  57. Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288

    Article  PubMed  CAS  Google Scholar 

  58. Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, Simons M (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118(10):3355–3366. doi:10.1172/JCI35298

    Article  PubMed  CAS  Google Scholar 

  59. Hackett PH, Roach RC (2004) High altitude cerebral edema. High Alt Med Biol 5(2):136–146. doi:10.1089/1527029041352054

    Article  PubMed  Google Scholar 

  60. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257. doi:10.1038/35025220

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank O. Sansom and I. Ahmad, who kindly provided the Floxed-Spry2 mouse strains (Beatson Institute, Glasgow, Scotland). We are grateful to M. A. Cabrita and I. Bhattacharya for helpful discussions. We thank Sigrid Strom, Ina Kalus and Elvira Haas for critical review of the manuscript. This work was supported by grants from the Swiss National Science Foundation to E. J. B. and from the University of Zürich.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rok Humar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10456_2012_9330_MOESM1_ESM.tif

Supplementary figure 1 Male and female MAECs show similar FGF2-Erk1/2 signaling and density dependent Spry2 expression (A) Confluent female (♀) and male (♂) MAECs were starved and stimulated with FGF2 for the indicated time. The cells were then lysed and analyzed for ERK1/2 phosphorylation and total Erk1/2 expression. Relative phosphorylation levels of Erk1/2 were quantified by densitometry. Bars show values as fold change of unstimulated cells ± s.e.m. n = 3. (B) Basal Spry2 expression and Erk1/2 activity in sparse and confluent female and male MAECs. Cells were plated at sparse (3,000 cells/cm2) or confluent conditions (50,000 cells/cm2), starved, lysed and analyzed by immunoblotting (TIFF 6264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peier, M., Walpen, T., Christofori, G. et al. Sprouty2 expression controls endothelial monolayer integrity and quiescence. Angiogenesis 16, 455–468 (2013). https://doi.org/10.1007/s10456-012-9330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-012-9330-9

Keywords

Navigation