Skip to main content
Log in

Shear stress-induced transcriptional regulation via hybrid promoters as a potential tool for promoting angiogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Among the key effects of fluid shear stress on vascular endothelial cells is modulation of gene expression. Promoter sequences termed shear stress response elements (SSREs) mediate the responsiveness of endothelial genes to shear stress. While previous studies showed that shear stress responsiveness is mediated by a single SSRE, these endogenous promoters often encode for multiple SSREs. Moreover, hybrid promoters encoding a single SSRE rarely respond to shear stress at the same magnitude as the endogenous promoter. Thus, to better understand the interplay between the various SSREs, and between SSREs and endothelial-specific sequences (ESS), we generated a series of constructs regulated by SSREs cassettes alone, or in combination with ESS, and tested their response to shear stress and endothelial specific expression. Among these constructs, the most responsive promoter (NR1/2) encoded a combination of two GAGACC/SSREs, the Sp1/Egr1 sequence, as well as a TPA response element (TRE). This construct was four- to five-fold more responsive to shear stress than a promoter encoding a single SSRE. The expression of constructs containing other SSRE combinations was unaffected or suppressed by shear stress. Addition of ESS derived from the Tie2 promoter, either 5′ or 3′ to NR1/2 resulted in shear stress transcriptional suppression, yet retained endothelial specific expression. Thus, the combination and localization order of the various SSREs in a single promoter is crucial in determining the pattern and degree of shear stress responsiveness. These shear stress responsive cassettes may prove beneficial in our attempt to time the expression of an endothelial transgene in the vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chien S, Shyy JY (1998) Effects of hemodynamic forces on gene expression and signal transduction in endothelial cells. Biol Bull 194:390–391. doi:10.2307/1543122

    Article  PubMed  CAS  Google Scholar 

  2. Gimbrone MA Jr, Topper JN, Nagel T et al (2000) Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci 902:230–239

    PubMed  CAS  Google Scholar 

  3. Pasyk KA, Jakobczak BA (2004) Vascular endothelium: recent advances. Eur J Dermatol 14:209–213

    PubMed  Google Scholar 

  4. Resnick N, Yahav H, Shay-Salit A et al (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81:177–199. doi:10.1016/S0079-6107(02)00052-4

    Article  PubMed  Google Scholar 

  5. Chiu JJ, Usami S, Chien S (2008) Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann Med 18:1–10. doi:10.1080/07853890802186921

    Google Scholar 

  6. Chien S (2008) Role of shear stress direction in endothelial mechanotransduction. Mol Cell Biomech 5:1–8

    PubMed  Google Scholar 

  7. García-Cardeña G, Gimbrone MA Jr (2006) Biomechanical modulation of endothelial phenotype: implications for health and disease. Handb Exp Pharmacol 176:79–95. doi:10.1007/3-540-36028-X_3

    Article  PubMed  Google Scholar 

  8. Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30:S198–S206. doi:10.1097/00003246-200205001-00005

    Article  PubMed  CAS  Google Scholar 

  9. Davies PF, Polacek DC, Shi C, Helmke BP (2002) The convergence of haemodynamics, genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorheology 39:299–306

    PubMed  CAS  Google Scholar 

  10. Helmke BP, Davies PF (2002) The cytoskeleton under external fluid mechanical forces: hemodynamic forces acting on the endothelium. Ann Biomed Eng 30:284–296. doi:10.1114/1.1467926

    Article  PubMed  Google Scholar 

  11. Resnick N, Yahav H, Khachigian LM et al (1997) Endothelial gene regulation by laminar shear stress. Adv Exp Med Biol 430:155–164

    PubMed  CAS  Google Scholar 

  12. Brooks AR, Lelkes PI, Rubanyi GM (2004) Gene expression profiling of vascular endothelial cells exposed to fluid mechanical forces: relevance for focal susceptibility to atherosclerosis. Endothelium 11:45–57. doi:10.1080/10623320490432470

    Article  PubMed  CAS  Google Scholar 

  13. Chen BP, Li YS, Zhao Y et al (2001) DNA microarray analysis of gene expression in endothelial cells in response to 24-h shear stress. Physiol Genomics 7:55–63. doi:10.1006/geno.2001.6511

    Article  PubMed  CAS  Google Scholar 

  14. Garcia-Cardena G, Comander JI, Blackman BR et al (2001) Mechanosensitive endothelial gene expression profiles: scripts for the role of hemodynamics in atherogenesis? Ann N Y Acad Sci 947:1–6

    Article  PubMed  CAS  Google Scholar 

  15. McCormick SM, Eskin SG, McIntire LV et al (2001) DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 98:8955–8960. doi:10.1073/pnas.171259298

    Article  PubMed  CAS  Google Scholar 

  16. Dai G, Vaughn S, Zhang Y, Gimbrone MA Jr et al (2007) Biomechanical forces in atherosclerosis-resistant vascular regions regulate endothelial redox balance via phosphoinositol 3-kinase/Akt-dependent activation of Nrf2. Circ Res 101:723–733. doi:10.1161/CIRCRESAHA.107.152942

    Article  PubMed  CAS  Google Scholar 

  17. McCormick SM, Frye SR, Eskin SG et al (2003) Microarray analysis of shear stressed endothelial cells. Biorheology 40:5–11

    PubMed  Google Scholar 

  18. Passerini AG, Polacek DC, Shi C et al (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA 101:2482–2487. doi:10.1073/pnas.0305938101

    Article  PubMed  CAS  Google Scholar 

  19. Almendro N, Bellon T, Rius C et al (1996) Cloning of the human platelet endothelial cell adhesion molecule-1 promoter and its tissue-specific expression. Structural and functional characterization. J Immunol 157:5411–5421

    PubMed  CAS  Google Scholar 

  20. Davis ME, Grumbach IM, Fukai T et al (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J Biol Chem 279:163–168. doi:10.1074/jbc.M307528200

    Article  PubMed  CAS  Google Scholar 

  21. Drummond GR, Cai H, Davis ME et al (2000) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 86:347–354

    PubMed  CAS  Google Scholar 

  22. Shyy JY, Lin MC, Han J et al (1995) The cis-acting phorbol ester “12-O-tetradecanoylphorbol 13-acetate”-responsive element is involved in shear stress-induced monocyte chemotactic protein 1 gene expression. Proc Natl Acad Sci USA 92:8069–8073. doi:10.1073/pnas.92.17.8069

    Article  PubMed  CAS  Google Scholar 

  23. Houston P, Dickson MC, Ludbrook V et al (1999) Fluid shear stress induction of the tissue factor promoter in vitro and in vivo is mediated by Egr-1. Arterioscler Thromb Vasc Biol 19:281–289

    PubMed  CAS  Google Scholar 

  24. Khachigian LM, Anderson KR, Halnon NJ et al (1997) Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol 17:2280–2286

    PubMed  CAS  Google Scholar 

  25. Lin MC, Almus-Jacobs F, Chen HH et al (1997) Shear stress induction of the tissue factor gene. J Clin Invest 99:737–744. doi:10.1172/JCI119219

    Article  PubMed  CAS  Google Scholar 

  26. Urbich C, Stein M, Reisinger K et al (2003) Fluid shear stress-induced transcriptional activation of the vascular endothelial growth factor receptor-2 gene requires Sp1-dependent DNA binding. FEBS Lett 535:87–93. doi:10.1016/S0014-5793(02)03879-6

    Article  PubMed  CAS  Google Scholar 

  27. Fisslthaler B, Boengler K, Fleming I et al (2003) Identification of a cis-element regulating transcriptional activity in response to fluid shear stress in bovine aortic endothelial cells. Endothelium 10:267–275. doi:10.1080/713715239

    Article  PubMed  CAS  Google Scholar 

  28. Korenaga R, Ando J, Kosaki K et al (1997) A negative transcriptional regulation of the VCAM-1 gene by fluid shear stress in murine endothelial cells. Am J Physiol 273:C1506–C1515

    PubMed  CAS  Google Scholar 

  29. Korenaga R, Yamamoto K, Ohura N et al (2001) Sp1-mediated downregulation of P2X4 receptor gene transcription in endothelial cells exposed to shear stress. Am J Physiol Heart Circ Physiol 280:H2214–H2221

    PubMed  CAS  Google Scholar 

  30. Miyakawa AA, de Lourdes Junqueira M, Krieger JE (2004) Identification of two novel shear stress responsive elements in rat angiotensin I converting enzyme promoter. Physiol Genomics 17:107–113. doi:10.1152/physiolgenomics.00169.2003

    Article  PubMed  CAS  Google Scholar 

  31. Houston P, White BP, Campbell CJ et al (1999) Delivery and expression of fluid shear stress-inducible promoters to the vessel wall: applications for cardiovascular gene therapy. Hum Gene Ther 10:3031–3044. doi:10.1089/10430349950016429

    Article  PubMed  CAS  Google Scholar 

  32. Hough C, Cuthbert CD, Notley C et al (2005) Cell type-specific regulation of von Willebrand factor expression by the E4BP4 transcriptional repressor. Blood 105:1531–1539. doi:10.1182/blood-2002-10-3093

    Article  PubMed  CAS  Google Scholar 

  33. Cowan PJ, Shinkel TA, Fisicaro N et al (2003) Targeting gene expression to endothelium in transgenic animals: a comparison of the human ICAM-2, PECAM-1 and endoglin promoters. Xenotransplantation 10:223–231. doi:10.1034/j.1399-3089.2003.01140.x

    Article  PubMed  Google Scholar 

  34. Lelievre E, Lionneton F, Soncin F et al (2001) The Ets family contains transcriptional activators and repressors involved in angiogenesis. Int J Biochem Cell Biol 33:391–407. doi:10.1016/S1357-2725(01)00025-5

    Article  PubMed  CAS  Google Scholar 

  35. Hough C, Cameron CL, Notley CR et al (2008) Influence of a GT repeat element on shear stress responsiveness of the VWF gene promoter. J Thromb Haemost 6:1183–1190. doi:10.1111/j.1538-7836.2008.03011.x

    Article  PubMed  CAS  Google Scholar 

  36. Velasco B, Ramírez JR, Relloso M et al (2001) Vascular gene transfer driven by endoglin and ICAM-2 endothelial-specific promoters. Gene Ther 8:897–904. doi:10.1038/sj.gt.3301468

    Article  PubMed  CAS  Google Scholar 

  37. Korenaga R, Yamamoto K, Ohura N et al (2001) Sp1-mediated downregulation of P2X4 receptor gene transcription in endothelial cells exposed to shear stress. Am J Physiol Heart Circ Physiol 280:2214–2221

    Google Scholar 

  38. Buchanan MR, Vazquez MJ, Gimbrone MA (1983) Arachidonic acid metabolism and the adhesion of human polymorphonuclear leukocytes to cultured vascular endothelial cells. Blood 62:889–895

    PubMed  CAS  Google Scholar 

  39. Dewey CF Jr, Bussolari SR, Gimbrone MA Jr et al (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  40. Resnick N, Collins T, Atkinson W et al (1993) Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci USA 90:7908. doi:10.1073/pnas.90.16.7908d

    Article  PubMed  CAS  Google Scholar 

  41. Inagaki Y, Truter S, Tanaka S et al (1995) Overlapping pathways mediate the opposing actions of tumor necrosis factor-alpha and transforming growth factor-beta on alpha 2(I) collagen gene transcription. J Biol Chem 270:3353–3358. doi:10.1074/jbc.270.7.3353

    Article  PubMed  CAS  Google Scholar 

  42. Mechtcheriakova D, Wlachos A, Holzmuller H et al (1999) Vascular endothelial cell growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-1. Blood 93:3811–3823

    PubMed  CAS  Google Scholar 

  43. Tsai EY, Falvo JV, Tsytsykova AV et al (2000) A lipopolysaccharide-specific enhancer complex involving Ets, Elk-1, Sp1, and CREB binding protein and p300 is recruited to the tumor necrosis factor alpha promoter in vivo. Mol Cell Biol 20:6084–6094. doi:10.1128/MCB.20.16.6084-6094.2000

    Article  PubMed  CAS  Google Scholar 

  44. Boutet SC, Quertermous T, Fadel BM (2001) Identification of an octamer element required for in vivo expression of the TIE1 gene in endothelial cells. Biochem J 360:23–29. doi:10.1042/0264-6021:3600023

    Article  PubMed  CAS  Google Scholar 

  45. Dube A, Akbarali Y, Sato TN et al (1999) Role of the Ets transcription factors in the regulation of the vascular-specific Tie2 gene. Circ Res 84:1177–1185

    PubMed  CAS  Google Scholar 

  46. Fadel BM, Boutet SC, Quertermous T (1998) Functional analysis of the endothelial cell-specific Tie2/Tek promoter identifies unique protein-binding elements. Biochem J 330:335–343

    PubMed  CAS  Google Scholar 

  47. Fadel BM, Boutet SC, Quertermous T (1999) Octamer-dependent in vivo expression of the endothelial cell-specific TIE2 gene. J Biol Chem 274:20376–20383. doi:10.1074/jbc.274.29.20376

    Article  PubMed  CAS  Google Scholar 

  48. Iljin K, Dube A, Kontusaari S et al (1999) Role of ets factors in the activity and endothelial cell specificity of the mouse Tie gene promoter. FASEB J 13:377–386

    PubMed  CAS  Google Scholar 

  49. Puri MC, Rossant J, Alitalo K et al (1995) The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. EMBO J 14:5884–5891

    PubMed  CAS  Google Scholar 

  50. Ogata K, Sato K, Tahirov TH et al (2003) Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. Curr Opin Struct Biol 13:40–48. doi:10.1016/S0959-440X(03)00012-5

    Article  PubMed  CAS  Google Scholar 

  51. Khachigian LM, Resnick N, Gimbrone MA Jr et al (1995) Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J Clin Invest 96:1169–1175. doi:10.1172/JCI118106

    Article  PubMed  CAS  Google Scholar 

  52. Elrayess MA, Webb KE, Flavell DM et al (2003) A novel functional polymorphism in the PECAM-1 gene (53G > A) is associated with progression of atherosclerosis in the LOCAT and REGRESS studies. Atherosclerosis 168:131–138. doi:10.1016/S0021-9150(03)00089-3

    Article  PubMed  CAS  Google Scholar 

  53. Abumiya T, Sasaguri T, Taba Y et al (2002) Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/KDR through the CT-rich Sp1 binding site. Arterioscler Thromb Vasc Biol 22:907–913. doi:10.1161/01.ATV.0000018300.43492.83

    Article  PubMed  CAS  Google Scholar 

  54. Partanen J, Dumont DJ (1999) Functions of Tie1 and Tie2 receptor tyrosine kinases in vascular development. Curr Top Microbiol Immunol 237:159–172

    PubMed  CAS  Google Scholar 

  55. Seval Y, Sati L, Celik-Ozenci C et al (2008) The distribution of Angiopoietin-1, Angiopoietin-2 and their receptors Tie-1 and Tie-2 in the very early human placenta. Placenta 29:809–815. doi:10.1016/j.placenta.2008.06.009

    Article  PubMed  CAS  Google Scholar 

  56. De Palma M, Venneri MA, Naldini L (2003) In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 14:1193–1206. doi:10.1089/104303403322168028

    Article  PubMed  CAS  Google Scholar 

  57. Kisanuki YY, Hammer RE, Miyazaki J et al (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230:230–242. doi:10.1006/dbio.2000.0106

    Article  PubMed  CAS  Google Scholar 

  58. Teng PI, Dichiara MR, Komuves LG et al (2002) Inducible and selective transgene expression in murine vascular endothelium. Physiol Genomics 11:99–107

    PubMed  CAS  Google Scholar 

  59. Greenberger S, Shaish A, Varda-Bloom N et al (2004) Transcription-controlled gene therapy against tumor angiogenesis. J Clin Invest 113:1017–1024

    PubMed  CAS  Google Scholar 

  60. Raikwar SP, Temm CJ, Raikwar NS et al (2005) Adenoviral vectors expressing human endostatin-angiostatin and soluble Tie2: enhanced suppression of tumor growth and antiangiogenic effects in a prostate tumor model. Mol Ther 12:1091–1100. doi:10.1016/j.ymthe.2005.07.690

    Article  PubMed  CAS  Google Scholar 

  61. Popkov M, Jendreyko N, McGavern DB et al (2005) Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody. Cancer Res Feb 65:972–981

    CAS  Google Scholar 

  62. Jaggar RT, Chan HY, Harris AL et al (1997) Endothelial cell-specific expression of tumor necrosis factor-alpha from the KDR or E-selectin promoters following retroviral delivery. Hum Gene Ther 8:2239–2247. doi:10.1089/hum.1997.8.18-2239

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to Dr. E. Sabo (Department of Pathology, Carmel Medical Center, Haifa, Israel) for his experienced input on the statistical analysis of the data. This study was supported by the Israeli Academy of Sciences (436-02, OB, NR), The Israeli Ministry of Health (4988, OB, NR), the Israeli Science Ministry 01-299-01-01 (NR, SE), the Rappaport Family Institute for Research in the Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer Binah.

Additional information

Michal Silberman and Yaron D. Barac have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silberman, M., Barac, Y.D., Yahav, H. et al. Shear stress-induced transcriptional regulation via hybrid promoters as a potential tool for promoting angiogenesis. Angiogenesis 12, 231–242 (2009). https://doi.org/10.1007/s10456-009-9143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-009-9143-7

Keywords

Navigation