Skip to main content
Log in

Use of RNA interference to inhibit integrin subunit αV-mediated angiogenesis

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

One of the central molecules in capillary formation during angiogenesis is the integrin αVβ3. The aim of this study was to inhibit alphaV-mediated angiogenesis in vitro using RNAs (siRNA) as well as antisense oligodeoxyribonucleotides (asON). Five siRNAs, against the alphaV chain of αVβ3, and three asON, which had the respective sequence of the antisense sequence of three of the siRNAs molecules, were examined. Two of the siRNAs and their respective asON were designed on the basis of computer-predicted secondary structure analysis of αV mRNA. The different molecules were transfected into human umbilical vein endothelials cells (HUVEC) using lipofection. Following stimulation by PMA, two siRNAs showed a dose-dependent inhibition of PMA-induced αV mRNA and protein upregulation, as assessed by real-time RT-PCR and flow cytometry. At a concentration of 25 nM a complete inhibition of protein upregulation was found using siRNAs while transfection of the respective asON sequences reduced the protein upregulation only by 44%. To evaluate the anti-angiogenic potential a cell culture model of human angiogenesis based on the co-cultivation of endothelial cells and dermal fibroblasts was used. Transfection of the siRNA sequence (50 nM) resulted in an inhibition of the total length of capillary-like tubules by 40.6% in comparison to 21.1% using the respective asON sequence. In conclusion, siRNA-based downregulation of αV expression showed a stronger inhibition of capillary tube formation in an angiogenesis in vitro assay, than asON having the same sequence as the antisense strand of the siRNAs. Therefore, siRNAs are useful tools for functional αV knock-down experiments and might be a therapeutic alternative for antagonists which bind directly to the integrins αVβ3 or αVβ5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nisato RE, Tille JC, Jonczyk A et al. Alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 2003; 6(2): 105–19

    Article  PubMed  CAS  Google Scholar 

  2. Friedlander M, Theesfeld CL, Sugita M et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 1996; 93(18): 9764–9

    Article  PubMed  CAS  Google Scholar 

  3. Koch AE. Review: Angiogenesis: Implications for rheumatoid arthritis. Arthritis Rheum 1998; 41(6): 951–62

    Article  PubMed  CAS  Google Scholar 

  4. Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Curr Opin Cell Biol 2001; 13(5): 563–8

    Article  PubMed  CAS  Google Scholar 

  5. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264(5158): 569–71

    Article  PubMed  CAS  Google Scholar 

  6. Friedlander M, Brooks PC, Shaffer RW et al. Definition of two angiogenic pathways by distinct alpha v integrins. Science 1995; 270(5241): 1500–2

    Article  PubMed  CAS  Google Scholar 

  7. Cheresh DA. Human endothelial cells synthesize and express an Arg–Gly–Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA 1987; 84(18): 6471–5

    Article  PubMed  CAS  Google Scholar 

  8. Eliceiri BP, Cheresh DA. Role of alpha v integrins during angiogenesis. Cancer J 2000; 6(Suppl 3): S245–9

    PubMed  Google Scholar 

  9. Suzuki S, Argraves WS, Arai H et al. Amino acid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs. J Biol Chem 1987; 262(29): 14080–5

    PubMed  CAS  Google Scholar 

  10. Brooks PC. Role of integrins in angiogenesis. Eur J Cancer 1996; 32A(14): 2423–9

    Article  PubMed  CAS  Google Scholar 

  11. Senger DR, Ledbetter SR, Claffey KP et al. Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 1996; 149(1): 293–305

    PubMed  CAS  Google Scholar 

  12. Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79(7): 1157–64

    Article  PubMed  CAS  Google Scholar 

  13. Brooks PC, Stromblad S, Klemke R et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96(4): 1815–22

    Article  PubMed  CAS  Google Scholar 

  14. Kronenwett R, Graf T, Nedbal W et al. Inhibition of angiogenesis in vitro by alphav integrin-directed antisense oligonucleotides. Cancer Gene Ther 2002; 9(7): 587–96

    Article  PubMed  CAS  Google Scholar 

  15. Lode HN, Moehler T, Xiang R et al. Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc Natl Acad Sci USA 1999; 96(4): 1591–6

    Article  PubMed  CAS  Google Scholar 

  16. Storgard CM, Stupack DG, Jonczyk A et al. Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest 1999; 103(1): 47–54

    Article  PubMed  CAS  Google Scholar 

  17. Keenan RM, Miller WH, Kwon C et al. Discovery of potent nonpeptide vitronectin receptor (alpha v beta 3) antagonists. J Med Chem 1997; 40(15): 2289–92

    Article  PubMed  CAS  Google Scholar 

  18. Nicolaou KC, Trujillo JI, Jandeleit B et al. Design, synthesis and biological evaluation of nonpeptide integrin antagonists. Bioorg Med Chem 1998; 6(8): 1185–208

    Article  PubMed  CAS  Google Scholar 

  19. Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669): 806–11

    Article  PubMed  CAS  Google Scholar 

  20. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000; 404(6775): 293–6

    Article  PubMed  CAS  Google Scholar 

  21. Hammond SM, Caudy AA, Hannon GJ. Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2001; 2(2): 110–9

    Article  PubMed  CAS  Google Scholar 

  22. Hannon GJ. RNA interference. Nature 2002; 418(6894): 244–51

    Article  PubMed  CAS  Google Scholar 

  23. Elbashir SM, Martinez J, Patkaniowska A et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 2001; 20(23): 6877–88

    Google Scholar 

  24. Patzel V, Steidl U, Kronenwett R et al. A theoretical approach to select effective antisense oligodeoxyribonucleotides at high statistical probability. Nucleic Acids Res 1999; 27(22): 4328–34

    Article  PubMed  CAS  Google Scholar 

  25. Senger M, Glatting KH, Ritter O, Suhai S. X-HUSAR, an X-based graphical interface for the analysis of genomic sequences. Comput Methods Programs Biomed 1995; 46(2): 131–41

    Article  PubMed  CAS  Google Scholar 

  26. Bishop ET, Bell GT, Bloor S et al. An in vitro model of angiogenesis: Basic features. Angiogenesis 1999; 3(4): 335–44

    Article  PubMed  CAS  Google Scholar 

  27. Gagliardi A, Hadd H, Collins DC. Inhibition of angiogenesis by suramin. Cancer Res 1992; 52(18): 5073–5

    PubMed  CAS  Google Scholar 

  28. Holen T, Amarzguioui M, Babaie E, Prydz H. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res 2003; 31(9): 2401–7

    Article  PubMed  CAS  Google Scholar 

  29. Kretschmer-Kazemi FR, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: A comparison with antisense oligonucleotides. Nucleic Acids Res 2003; 31(15): 4417–24

    Article  Google Scholar 

  30. Overhoff M, Alken M, Far RK et al. Local RNA target structure influences siRNA efficacy: A systematic global analysis. J Mol Biol 2005; 348(4): 871–81

    Article  PubMed  CAS  Google Scholar 

  31. Reynolds A, Leake D, Boese Q et al. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22(3): 326–30

    Article  PubMed  CAS  Google Scholar 

  32. Achenbach TV, Brunner B, Heermeier K. Oligonucleotide-based knockdown technologies: Antisense versus RNA interference. Chembiochem 2003; 4(10): 928–35

    Article  PubMed  CAS  Google Scholar 

  33. Dorn G, Abdel’Al S, Natt FJ et al. Specific inhibition of the rat ligand-gated ion channel P2X3 function via methoxyethoxy-modified phosphorothioated antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 2001; 11(3): 165–74

    Article  PubMed  CAS  Google Scholar 

  34. Hemmings-Mieszczak M, Dorn G, Natt FJ et al. Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. Nucleic Acids Res 2003; 31(8): 2117–26

    Article  PubMed  CAS  Google Scholar 

  35. Reynolds LE, Wyder L, Lively JC et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 2002; 8(1): 27–34

    Article  PubMed  CAS  Google Scholar 

  36. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 1998; 95(4): 507–19

    Article  PubMed  CAS  Google Scholar 

  37. Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002; 8(9): 918–21

    Article  PubMed  CAS  Google Scholar 

  38. Gutheil JC, Campbell TN, Pierce PR et al. Targeted antiangiogenic therapy for cancer using Vitaxin: A humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res 2000; 6(8): 3056–61

    PubMed  CAS  Google Scholar 

  39. Eskens FA, Dumez H, Hoekstra R et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003; 39(7): 917–26

    Article  PubMed  CAS  Google Scholar 

  40. Thomas GJ, Jones J, Speight PM. Integrins and oral cancer. Oral Oncol 1997; 33(6): 381–8

    Article  PubMed  CAS  Google Scholar 

  41. Trikha M, Zhou Z, Nemeth JA et al. CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo. Int J Cancer 2004; 110(3): 326–35

    Article  PubMed  CAS  Google Scholar 

  42. Marshall JF, Hart IR. The role of alpha v-integrins in tumour progression and metastasis. Semin Cancer Biol 1996; 7(3): 129–38

    Article  PubMed  CAS  Google Scholar 

  43. Petitclerc E, Stromblad S, von Schalscha TL et al. Integrin alpha(v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 1999; 59(11): 2724–30

    PubMed  CAS  Google Scholar 

  44. Gladson CL, Cheresh DA. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 1991; 88(6): 1924–32

    Article  PubMed  CAS  Google Scholar 

  45. Choi ET, Engel L, Callow AD et al. Inhibition of neointimal hyperplasia by blocking alpha V beta 3 integrin with a small peptide antagonist GpenGRGDSPCA. J Vasc Surg 1994; 19(1): 125–34

    PubMed  CAS  Google Scholar 

  46. Czauderna F, Fechtner M, Dames S et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 31(11): 2705–16

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Leukämie Liga e.V. Düsseldorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Graef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graef, T., Steidl, U., Nedbal, W. et al. Use of RNA interference to inhibit integrin subunit αV-mediated angiogenesis. Angiogenesis 8, 361–372 (2006). https://doi.org/10.1007/s10456-005-9026-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9026-5

Key words

Navigation