Skip to main content
Log in

Molecular characterization and phylogenetics of Indian polychaete fauna: scope for implementation in ecological monitoring

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

DNA barcodes are increasingly applied to ascertain the taxonomic identification to improve the speed and accuracy of ecological monitoring programmes. The success of integrating molecular approach in routine surveys ultimately depends on the coverage of reference libraries that require constant upgradation. The present molecular study was aimed at strengthening the genetic database of Polychaeta, which at present is poorly constructed. The current effort is first of its kind that covered a large geographical area along the northwest India. The study has contributed in building a comprehensive COI database of polychaete taxocene that included new records of one family, four genera and six species. The phylogenetic analysis revealed presence of 19 distinct clades, each comprising of individual family with studied polychaete species and conspecific/congeneric reference sequences. This is the first analysis that revealed a close relationship between Longosomatidae and Cirratulidae, rather than Spioniform polychaetes. Thus, the phylogenetic information was useful in distinguishing the polychaete species in the study region. Molecular analysis also facilitated the identification of potentially new Streblospio sp. that displayed close morphological as well as genetic affinity with S. gynobranchiata, with an inter-specific distance of 0.11. The present study proves the effectiveness of molecular characterization and phylogenetics in delineating the Indian polychaete species complex for ecological monitoring. The reference database can aid the high-throughput biomonitoring programmes in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the GenBank repository [https://www.ncbi.nlm.nih.gov/genbank/]. All data generated or analysed during this study is provided in this article as a supplementary information file [Appendix A and Appendix B].

References

  • Aguado-Giménez F, Gairín JI, Martinez-Garcia E, Fernandez-Gonzalez V, Moltó MB, Cerezo-Valverde J, Sanchez-Jerez P (2015) Application of “taxocene surrogation” and “taxonomic sufficiency” concepts to fish farming environmental monitoring, comparison of BOPA index versus polychaete assemblage structure. Mar Environ Res 103:27–35

    Article  PubMed  CAS  Google Scholar 

  • Amini-Yekta F, Izadi S, Asgari M, Aghajan-Pour F, Shokri MR (2017) Higher taxa as surrogates for species richness in intertidal habitats of Qeshm Island in the Persian Gulf. Mar Biodivers 48(3):1421–1428

    Article  Google Scholar 

  • Avó AP, Daniell TJ, Neilson R, Oliveira S, Branco J, Adão H (2017) DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: advances in molecular tools for biodiversity assessment. Front Mar Sci 4:66

    Article  Google Scholar 

  • Aylagas E, Borja Á, Rodríguez-Ezpeleta N (2014) Environmental status assessment using DNA metabarcoding: towards a genetics based marine biotic index (gAMBI). PLoS ONE 9(3):e90529

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aylagas E, Borja Á, Muxika I, Rodríguez-Ezpeleta N (2018) Adapting metabarcoding-based benthic biomonitoring into routine marine ecological status assessment networks. Ecol Indic 95:194–202

    Article  Google Scholar 

  • Barroso R, Klautau M, Solé-Cava AM, Paiva PC (2010) Eurythoe complanata (Polychaeta: Amphinomidae) the ‘cosmopolitan’fireworm consists of at least three cryptic species. Mar Biol 157(1):69–80

    Article  Google Scholar 

  • Bevilacqua S, Terlizzi A (2016) Species surrogacy in environmental impact assessment and monitoring: extending the BestAgg approach to asymmetrical designs. Mar Ecol Prog Ser 547:19–32

    Article  Google Scholar 

  • Bhadury P, Austen MC, Bilton DT, Lambshead PJD, Rogers AD, Smerdon GR (2006) Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9

    Article  CAS  Google Scholar 

  • Bik HM (2017) Let’s rise up to unite taxonomy and technology. PLoS Biol 15(8):e2002231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27(4):233–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Blake JA (2016) Kirkegaardia (Polychaeta Cirratulidae) new name for Monticellina Laubier preoccupied in the Rhabdocoela together with new records and descriptions of eight previously known and sixteen new species from the Atlantic Pacific and Southern Oceans. Zootaxa 4166(1):1–93

    Article  PubMed  Google Scholar 

  • Blake JA, Arnofsky PL (1999) Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402:57–106

    Article  Google Scholar 

  • Borja A, Franco J, Pérez V (2000) A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar Pollut Bull 40(12):1100–1114

    Article  CAS  Google Scholar 

  • Borja A, Elliott M, Andersen JH, Berg T, Carstensen J, Halpern BS et al (2016) Overview of integrative assessment of marine systems: the ecosystem approach in practice. Front Mar Sci 3:20

    Google Scholar 

  • Bourlat SJ, Borja A, Gilbert J, Taylor MI, Davies N, Weisberg SB et al (2013) Genomics in marine monitoring: new opportunities for assessing marine health status. Mar Pollut Bull 74(1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Brasier MJ, Wiklund H, Neal L, Jeffreys R, Linse K, Ruhl H, Glover AG (2016) DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes. R Soc Open Sci 3(11):160432

    Article  PubMed  PubMed Central  Google Scholar 

  • Canales-Aguirre CB, Rozbaczylo N, Hernández CE (2011) Genetic identification of benthic polychaetes in a biodiversity hotspot in the southeast Pacific. Rev Biol Mar Oceanogr 46(1):89–96

    Article  Google Scholar 

  • Çinar ME, Katagan T, Öztürk B, Bakir K, Dagli E, Açik S et al (2012) Spatio-temporal distributions of zoobenthos in soft substratum of Izmir Bay (Aegean Sea eastern Mediterranean) with special emphasis on alien species and ecological quality status. J Mar Biol Assoc UK 92(7):1457–1477

    Article  Google Scholar 

  • Curry CJ, Gibson JF, Shokralla S, Hajibabaei M, Baird DJ (2018) Identifying North American freshwater invertebrates using DNA barcodes: are existing COI sequence libraries fit for purpose? Freshw Sci 37(1):178–189

    Article  Google Scholar 

  • Dasmahapatra KK, Mallet J (2006) DNA barcodes: recent successes and future prospects. Heredity 97(4):254–255

    Article  CAS  PubMed  Google Scholar 

  • Day JH (1967) A monograph on the polychaete of southern Africa part I (Errantia) and part II (Sedentaria), Trustees of the British Museum Natural History London pp 1–878

  • De Jonge VN, Elliott M, Brauer VS (2006) Marine monitoring: its shortcomings and mismatch with the EU Water Framework Directive’s objectives. Mar Pollut Bull 53(1–4):5–19

    Article  PubMed  CAS  Google Scholar 

  • Del-Pilar-Ruso Y, De-la-Ossa-Carretero JA, Loya-Fernández A, Ferrero-Vicente LM, Giménez-Casalduero F, Sánchez-Lizaso JL (2009) Assessment of soft-bottom Polychaeta assemblage affected by a spatial confluence of impacts: sewage and brine discharges. Mar Pollut Bull 58(5):765–786

    Article  CAS  Google Scholar 

  • Dowle EJ, Pochon XC, Banks J, Shearer K, Wood SA (2016) Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: a case study using freshwater macroinvertebrates. Mol Ecol Resour 16(5):1240–1254

    Article  CAS  PubMed  Google Scholar 

  • Erpenbeck D, Voigt O, Al-Aidaroos AM, Berumen ML, Büttner G, Catania D et al (2016) Molecular biodiversity of Red Sea demosponges. Mar Pollut Bull 105(2):507–514

    Article  CAS  PubMed  Google Scholar 

  • Fauchald K (1977) The polychaete worms definitions and keys to the orders families and genera. Nat Hist Mus Los Angel Cty Sci Ser 28:1–190

    Google Scholar 

  • Feebarani J, Joydas TV, Damodaran R, Borja A (2016) Benthic quality assessment in a naturally-and human-stressed tropical estuary. Ecol Indic 67:380–390

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mithochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Marine Biol Biotechnol 3(5):294–299

    CAS  Google Scholar 

  • Gaonkar CA, Sawant SS, Anil AC, Venkat K, Harkantra SN (2010) Mumbai harbour India: gateway for introduction of marine organisms. Environ Monit Assess 163(1–4):583–589

    Article  CAS  PubMed  Google Scholar 

  • Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Annu Rev Mar Sci 2:367–393

    Article  Google Scholar 

  • Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA et al (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol 7(11):1299–1307

    Article  Google Scholar 

  • Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ (2011) Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS ONE 6(4):e17497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’agrosa C et al (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952

    Article  CAS  PubMed  Google Scholar 

  • Hardy SM, Carr CM, Hardman M, Steinke D, Corstorphine E, Mah C (2011) Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar Biodivers 41(1):195–210

    Article  Google Scholar 

  • Hutchings P, Kupriyanova E (2018) Cosmopolitan polychaetes–fact or fiction? Personal and historical perspectives. Invertebr Syst 32(1):1–9

    Article  Google Scholar 

  • Ingole B, Sivadas S, Nanajkar M, Sautya S, Nag A (2009) A comparative study of macrobenthic community from harbours along the central west coast of India. Environ Monit Assess 154(1–4):135

    Article  CAS  PubMed  Google Scholar 

  • Joydas TV, Damodaran R (2009) Infaunal macrobenthos along the shelf waters of the west coast of India Arabian Sea. Indian J Mar Sci 38:191–204

    CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi G, Mukai R, Alalykina I, Miura T, Kojima S (2017) Phylogeography of benthic invertebrates in deep waters: a case study of Sternaspis cf williamsae (Annelida: Sternaspidae) from the northwestern Pacific Ocean. Deep Sea Res Part II Top Stud Oceanogr 154:159–166

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvist S (2013) Barcoding in the dark? A critical view of the sufficiency of zoological DNA barcoding databases and a plea for broader integration of taxonomic knowledge. Mol Phylogenet Evol 69(1):39–45

    Article  CAS  PubMed  Google Scholar 

  • Larras F, Keck F, Montuelle B, Rimet F, Bouchez A (2014) Linking diatom sensitivity to herbicides to phylogeny: A step forward for biomonitoring? Environ Science Technol 48(3):1921–1930

    Article  CAS  Google Scholar 

  • Lejzerowicz F, Esling P, Pillet L, Wilding TA, Black KD, Pawlowski J (2015) High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems. Sci Rep 5:13932

    Article  PubMed  PubMed Central  Google Scholar 

  • Lobo J, Costa PM, Teixeira MA, Ferreira MS, Costa MH, Costa FO (2013) Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol 13(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lobo J, Teixeira MA, Borges LM, Ferreira MS, Hollatz C, Gomes PT et al (2016) Starting a DNA barcode reference library for shallow water polychaetes from the southern European Atlantic coast. Mol Ecol Resour 16(1):298–313

    Article  CAS  PubMed  Google Scholar 

  • Lobo J, Shokralla S, Costa MH, Hajibabaei M, Costa FO (2017) DNA metabarcoding for high-throughput monitoring of estuarine macrobenthic communities. Sci Rep 7(1):15618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magesh M, Kvist S, Glasby CJ (2012) Description and phylogeny of Namalycastis jaya sp. n. (Polychaeta, Nereididae, Namanereidinae) from the southwest coast of India. ZooKeys 238:31–43

    Article  Google Scholar 

  • Magesh M, Glasby CJ, Kvist S (2014) Redescription of Namalycastis glasbyi Fernando, Rajasekaran 2007 (Annelida, Nereididae, Namanereidinae) from India. Proc Biol Soc Wash 127(3):455–465

    Article  Google Scholar 

  • Mahon AR, Mahon HK, Dauer DM, Halanych KM (2009) Discrete genetic boundaries of three Streblospio (Spionidae, Annelida) species and the status of S. shrubsolii. Mar Biol Res 5(2):172–178

    Article  Google Scholar 

  • Majithiya D, Yadav A, Ram A (2018) Behaviour of trace metals in the anoxic environment of Veraval harbour India. Mar Pollut Bull 129(2):645–654

    Article  CAS  PubMed  Google Scholar 

  • Maturana CS, Moreno RA, Labra FA, González-Wevar CA, Rozbaczylo N, Carrasco FD, Poulin E (2011) DNA barcoding of marine polychaetes species of southern Patagonian fjords. Rev Biol Mar Oceanogr 46(1):35–42

    Article  Google Scholar 

  • Miralles L, Ardura A, Arias A, Borrell YJ, Clusa L, Dopico E et al (2016) Barcodes of marine invertebrates from north Iberian ports: Native diversity and resistance to biological invasions. Mar Pollut Bull 112(1–2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Misra S, Kundu R (2005) Seasonal variations in population dynamics of key intertidal molluscs at two contrasting locations. Aquat Ecol 39(3):315–324

    Article  Google Scholar 

  • Mohrbeck I, Raupach MJ, Arbizu PM, Knebelsberger T, Laakmann S (2015) High-throughput sequencing- The key to rapid biodiversity assessment of marine metazoa? PLoS ONE 10(10):e0140342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mulik J, Sukumaran S, Srinivas T, Vijapure T (2017) Comparative efficacy of benthic biotic indices in assessing the Ecological Quality Status (EcoQS) of the stressed Ulhas estuary India. Mar Pollut Bull 120(1–2):192–202

    Article  CAS  PubMed  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853

    Article  CAS  PubMed  Google Scholar 

  • Neal L, Linse K, Brasier MJ, Sherlock E, Glover AG (2018) Comparative marine biodiversity and depth zonation in the Southern Ocean: evidence from a new large polychaete dataset from Scotia and Amundsen seas. Mar Biodivers 48(1):581–601

    Article  Google Scholar 

  • Nogueira JMM, Fitzhugh K, Hutchings P (2013) The continuing challenge of phylogenetic relationships in Terebelliformia (Annelida: Polychaeta). Invertebr Syst 27(2):186–238

    Article  Google Scholar 

  • Norlinder E, Nygren A, Wiklund H, Pleijel F (2012) Phylogeny of scale-worms (Aphroditiformia Annelida) assessed from 18SrRNA 28SrRNA 16SrRNA mitochondrial cytochrome c oxidase subunit I (COI) and morphology. Mol Phylogenet Evol 65(2):490–500

    Article  CAS  PubMed  Google Scholar 

  • Nygren A, Pleijel F (2010) Redescription of Imajimaea draculai—a rare syllid polychaete associated with the sea pen Funiculina quadrangularis. J Mar Biol Assoc UK 90(7):1441–1448

    Article  CAS  Google Scholar 

  • Parapar J, Aguirrezabalaga F, Moreira J (2014) First record of Longosomatidae (Annelida: Polychaeta) from Iceland with a worldwide review of diagnostic characters of the family. J Nat Hist 48(17–18):983–998

    Article  Google Scholar 

  • Parapar J, Vijapure T, Moreira J, Sukumaran S (2016) A new species of Heterospio (Annelida Longosomatidae) from the Indian Ocean. Eur J Taxon 220:1–17

    Google Scholar 

  • Pelletier MC, Gold AJ, Heltshe JF, Buffum HW (2010) A method to identify estuarine macroinvertebrate pollution indicator species in the Virginian Biogeographic Province. Ecol Indic 10(5):1037–1048

    Article  CAS  Google Scholar 

  • Pleijel F, Rouse G, Nygren A (2009) Five colour morphs and three new species of Gyptis (Hesionidae Annelida) under a jetty in Edithburgh South Australia. Zool Scr 38(1):89–99

    Article  Google Scholar 

  • Prathapan KD, Dharma Rajan P, Narendran TC, Viraktamath CA, Subramanian KA, Aravind NA, Poorani J (2006) Biological Diversity Act 2002: shadow of permit-raj over research. Curr Sci 91(8):1006–1007

    Google Scholar 

  • Radashevsky VI, Selifonova ZP (2013) Records of Polydora cornuta and Streblospio gynobranchiata (Annelida Spionidae) from the Black Sea. Mediterr Mar Sci 14(2):261–269

    Article  Google Scholar 

  • Rouse GW, Fauchald K (1997) Cladistics and polychaetes. Zool Scr 26(2):139–204

    Article  Google Scholar 

  • Rousset V, Pleijel F, Rouse GW, Erséus C, Siddall ME (2007) A molecular phylogeny of annelids. Cladistics 23(1):41–63

    Article  PubMed  Google Scholar 

  • Satheeshkumar P, Jagadeesan L (2010) Phylogenetic position and genetic diversity of Neridae—polychaeta based on molecular data from 16S r RNA sequences. Middle-East J Sci Res 6(6):550–555

    Google Scholar 

  • Sekar V, Rajasekaran R, Prasannakumar C, Sankar R, Sridhar R, Sachithanandam V (2016) Morphological and COI sequence based characterisation of marine polychaete species from Great Nicobar Island India. In: DNA barcoding in marine perspectives. Springer, Cham, pp 89–111

    Chapter  Google Scholar 

  • Sigamani S, Perumal M, Arumugam S, Jose HPM, Veeraiyan B (2015) AMBI indices and multivariate approach to assess the ecological health of Vellar-Coleroon estuarine system undergoing various human activities. Mar Pollut Bull 100(1):334–343

    Article  CAS  PubMed  Google Scholar 

  • Sigamani S, Perumal M, Thivakaran GA, Thangavel B, Kandasamy K (2016) DNA barcoding of macrofauna act as a tool for assessing marine ecosystem. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.07.017

    Article  PubMed  Google Scholar 

  • Soares-Gomes A, Mendes CLT, Tavares M, Santi L (2012) Taxonomic sufficiency of polychaete taxocenes for estuary monitoring. Ecol Indic 15(1):149–156

    Article  CAS  Google Scholar 

  • Struck TH, Schult N, Kusen T, Hickman E, Bleidorn C, McHugh D, Halanych KM (2007) Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol Biol 7(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukumaran S, Vijapure T, Mulik J, Rokade MA, Gajbhiye SN (2013) Macrobenthos in anthropogenically influenced zones of a coralline marine protected area in the Gulf of Kachchh India. J Sea Res 76:39–49

    Article  Google Scholar 

  • Sukumaran S, Vijapure T, Kubal P, Mulik J, Rokade MA, Salvi S, Thomas J, Naidu VS (2016) Polychaete community of a marine protected area along the west coast of India—prior and post the tropical cyclone Phyan. PLoS ONE 11(8):e0159368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Kupriyanova EK, Qiu JW (2012) COI barcoding of Hydroides: a road from impossible to difficult. Invertebr Syst 26(6):539–547

    Article  CAS  Google Scholar 

  • Sundararajan S, Khadanga MK, Kumar JPPJ, Raghumaran S, Vijaya R, Jena BK (2017) Ecological risk assessment of trace metal accumulation in sediments of Veraval Harbor Gujarat Arabian Sea. Mar Pollut Bull 114(1):592–601

    Article  CAS  PubMed  Google Scholar 

  • Tautz D, Arctander P, Minelli A, Thomas RH, Vogler AP (2003) A plea for DNA taxonomy. Trends Ecol Evol 18(2):70–74

    Article  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Venkataraman K, Wafar MVM (2005) Coastal and marine biodiversity of India. Indian J Mar Sci 34(1):57–75

    Google Scholar 

  • Vogler AP, Monaghan MT (2007) Recent advances in DNA taxonomy. J Zool Syst Evol Res 45(1):1–10

    Article  Google Scholar 

  • Wilson RS (2000) Family Longosomatidae. In: Beesley PL, Ross GJB, Glasby CJ (eds) Polychaetes and allies: the southern synthesis. CSIRO Publishing, Melbourne, pp 193

    Google Scholar 

  • Zaiko A, Samuiloviene A, Ardura A, Garcia-Vazquez E (2015) Metabarcoding approach for nonindigenous species surveillance in marine coastal waters. Mar Pollut Bull 100(1):53–59

    Article  CAS  PubMed  Google Scholar 

  • Zenetos A, Çinar ME, Pancucci-Papadopoulou MA, Harmelin JG, Furnari G, Andaloro F et al (2005) Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr Mar Sci 6(2):63–118

    Article  Google Scholar 

  • Zhou H, Zhang Z, Chen H, Sun R, Wang H, Guo L, Pan H (2010) Integrating a DNA barcoding project with an ecological survey: a case study on temperate intertidal polychaete communities in Qingdao China. Chin J Oceanol Limnol 28(4):899–910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors express their sincere thanks to MoES (Ministry of Earth Sciences) for providing financial support through the COMAPS (Coastal Ocean Monitoring and Prediction System) programme. Authors are thankful to the Director of CSIR-NIO (CSIR-National Institute of Oceanography) for extending the facilities. TV is grateful to CSIR for awarding a Senior Research Fellowship that gave her the opportunity to carry out the present study. This is CSIR-NIO contribution no. 6445.

Funding

MoES (Ministry of Earth Sciences) provided funding for the research through the COMAPS (Coastal Ocean Monitoring and Prediction System) programme. CSIR (Council for Scientific and Industrial Research) awarded Senior Research Fellowship to Tejal Vijapure that gave her the opportunity to conduct the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soniya Sukumaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Télesphore Sime-Ngando.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijapure, T., Sukumaran, S. & Manohar, C.S. Molecular characterization and phylogenetics of Indian polychaete fauna: scope for implementation in ecological monitoring. Aquat Ecol 53, 665–677 (2019). https://doi.org/10.1007/s10452-019-09717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09717-0

Keywords

Navigation