Skip to main content

Advertisement

Log in

Effects of macrophyte-specific olfactory cues on fish preference patterns

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Vegetated habitats provide numerous benefits to nekton, including structural refuge from predators and food sources. However, the sensory mechanisms by which fishes locate these habitats remain unclear for many species, especially when environmental conditions (such as increased turbidity) are unfavorable for visual identification of habitats. Here, a series of laboratory experiments test whether three species of adult fish (golden topminnow Fundulus chrysotus Günther 1866, sailfin molly Poecilia latipinna Lesueur 1821, and western mosquitofish Gambusia affinis Baird and Girard 1853) use plant chemical cues to orient to one of two habitats [hydrilla Hydrilla verticillata (L.f.) Royle or water hyacinth Eichhornia crassipes (Mart.) Solms]. First, experiments in aquaria were conducted offering fish a choice of the two habitats to determine preference patterns. Next, a two-channel flume, with each side containing flow originating in one of the two habitats, was used to determine whether preferences were still exhibited when fish could only detect habitats through olfactory means. While patterns among the three fish species tested here were variable, results did indicate consistent habitat preferences despite the lack of cues other than olfactory, suggesting that these organisms are capable of discriminating habitats via chemical exudates from plants. As such, olfactory mechanisms likely provide vital information about the surrounding environment and future work should be directed at determining how anthropogenic inputs such as eutrophication and sediment runoff affect the physiology of these sensory capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Atema J, Kingsford M, Gerlach G (2002) Larval reef fish could use odour for detection, retention and orientation to reefs. Mar Ecol Prog Ser 241:151–160

    Article  Google Scholar 

  • Beck M, Heck K, Able K, Childers D, Eggleston D, Gillanders B et al (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51(8):633–641

    Article  Google Scholar 

  • Beck M, Brumbaugh R, Airoldi L, Carranza A, Coen L, Crawford C et al (2011) Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61(2):107–116

    Article  Google Scholar 

  • Benfield M, Aldrich D (1992) Attraction of postlarval Penaeus aztecus Ives and P. setiferus (L.) (Crustacea:Decapoda:Penaeidae) to estuarine water in a laminar-flow choice chamber. J Exp Mar Biol Ecol 156(1):39–52

    Article  Google Scholar 

  • Deegan L, Johnson D, Warren R, Peterson B, Fleeger J, Fagherazzi S, Wollheim W (2012) Coastal eutrophication as a driver of salt marsh loss. Nature 490(7420):388–392

    Article  CAS  PubMed  Google Scholar 

  • Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199(1):83–91

    CAS  PubMed  Google Scholar 

  • Dixson D, Jones G, Munday P, Planes S, Pratchett M, Srinivasan M et al (2008) Coral reef fish smell leaves to find island homes. Proc R Soc Lon B Biol Sci 275(1653):2831–2839

    Article  Google Scholar 

  • Dixson D, Munday P, Jones G (2010) Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol Lett 13(1):68–75

    Article  PubMed  Google Scholar 

  • Ferrari M, Wisenden B, Chivers D (2010) Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88(7):698–724

    Article  Google Scholar 

  • Forward R, Tankersley R, Smith K, Welch J (2003) Effects of chemical cues on orientation of blue crab, Callinectes sapidus, megalopae in flow: implications for location of nursery areas. Mar Biol 142(4):747–756

    Article  Google Scholar 

  • Gerlach G, Atema J, Kingsford M, Black K, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci 104(3):858–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heck K, Hays G, Orth R (2003) Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar Ecol Prog Ser 253:123–136

    Article  Google Scholar 

  • Hinkle-Conn C, Fleeger J, Gregg J, Carman K (1998) Effects of sediment-bound polycyclic aromatic hydrocarbons on feeding behavior in juvenile spot (Leiostomus xanthurus Lacépède: Pisces). J Exp Mar Biol Ecol 227:113–132

    Article  CAS  Google Scholar 

  • Huijbers C, Nagelkerken I, Lössbroek P, Schulten I, Siegenthaler A, Holderied M, Simpson S (2012) A test of the senses: fish select novel habitats by responding to multiple cues. Ecology 93(1):46–55

    Article  PubMed  Google Scholar 

  • Lecchini D, Planes S, Galzin R (2005) Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. Behav Ecol Sociobiol 58(1):18–26

    Article  Google Scholar 

  • Lecchini D, Waqalevu V, Parmentier E, Radford C, Banaigs B (2013) Fish larvae prefer coral over algal water cues: implications of coral reef degradation. Mar Ecol Prog Ser 475:303–307

    Article  Google Scholar 

  • Little E, Archeski R, Flerov B, Kozlovskaya V (1990) Behavioral indicators of sublethal toxicity in rainbow trout. Arch Environ Contam Toxicol 19(3):380–385

    Article  CAS  PubMed  Google Scholar 

  • Lohmann K, Lohmann C, Endres C (2008) The sensory ecology of ocean navigation. J Exp Biol 211(11):1719–1728

    Article  PubMed  Google Scholar 

  • Mann K, Turnell E, Atema J, Gerlach G (2003) Kin recognition in juvenile zebrafish (Danio rerio) based on olfactory cues. Biol Bull 205(2):224–225

    Article  CAS  PubMed  Google Scholar 

  • Martin C (2014) Naïve prey exhibit reduced antipredator behavior and survivorship. PeerJ 2:e665

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin C, Valentine J (2012) Eurasian milfoil invasion in estuaries: physical disturbance can reduce the proliferation of an aquatic nuisance species. Mar Ecol Prog Ser 449:109–119

    Article  Google Scholar 

  • Martin C, Fodrie F, Heck K, Mattila J (2010) Differential habitat use and antipredator response of juvenile roach (Rutilus rutilus) to olfactory and visual cues from multiple predators. Oecologia 162(4):893–902

    Article  PubMed  Google Scholar 

  • Martin C, Hollis L, Turner R (2015) Effects of oil-contaminated sediments on submerged vegetation: an experimental assessment of Ruppia maritima. PLoS ONE 10(10):e0138797

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercado-Silva N (2005) Condition index of the eastern oyster, Crassostrea virginica (Gmelin, 1791) in Sapelo Island Georgia-Effects of site, position on bed and pea crab parasitism. J Shellfish Res 24(1):121–126

    Article  Google Scholar 

  • Munday P, Dixson D, Donelson J, Jones G, Pratchett M, Devitsina G, Døving K (2009) Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc Natl Acad Sci 106(6):1848–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennings S, Carefoot T, Siska E, Chase M, Page T (1998) Feeding preferences of a generalist salt-marsh crab: relative importance of multiple plant traits. Ecology 79(6):1968–1979

    Article  Google Scholar 

  • Peterson C, Renaud P (1989) Analysis of feeding preference experiments. Oecologia 80(1):82–86

    Article  CAS  PubMed  Google Scholar 

  • Rooker J, Secor D, DeMetrio G, Kaufman A, Ríos A, Ticina V (2008) Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar Ecol Prog Ser 368:231–239

    Article  Google Scholar 

  • Rozas L, Martin C, Valentine J (2013) Effects of reduced hydrological connectivity on the nursery use of shallow estuarine habitats within a river delta. Mar Ecol Prog Ser 492:9–20

    Article  Google Scholar 

  • Ryer C (1988) Pipefish foraging: effects of fish size, prey size and altered habitat complexity. Mar Ecol Prog Ser 48(1):37–45

    Article  Google Scholar 

  • Schumacker E, Dumbauld B, Kauffman B (1998) Investigations using oyster condition index to monitor the aquatic environment of Willapa Bay Washington. J Shellfish Res 17(1):338–339

    Google Scholar 

  • Stoner A (1982) The influence of benthic macrophytes on the foraging behavior of pinfish, Lagodon rhomboides (Linnaeus). J Exp Mar Biol Ecol 58(2):271–284

    Article  Google Scholar 

  • Thorrold S, Latkoczy C, Swart P, Jones C (2001) Natal homing in a marine fish metapopulation. Science 291(5502):297–299

    Article  CAS  PubMed  Google Scholar 

  • Ward A, Hart P (2003) The effects of kin and familiarity on interactions between fish. Fish Fish 4(4):348–358

    Article  Google Scholar 

  • Waycott M, Duarte C, Carruthers T, Orth R, Dennison W, Olyarnik S et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci 106(30):12377–12381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber J, Epifanio C (1996) Response of mud crab (Panopeus herbstii) megalopae to cues from adult habitat. Mar Biol 126(4):655–661

    Article  Google Scholar 

  • Zhou T, Weis J (1998) Swimming behavior and predator avoidance in three populations of Fundulus heteroclitus larvae after embryonic and/or larval exposure to methylmercury. Aquat Toxicol 43(2):131–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was possible thanks to logistical and financial support provided by Louisiana State University. Previous drafts were improved thanks to the editorial efforts of A. Johnson, B. Pfirrman, J. Lefchek, and R. Orth, as well as two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Martin.

Ethics declarations

Conflict of interest

The author declares that no conflict of interest exists, financial or otherwise, that may influence objectivity of this manuscript.

Additional information

Handling editor: Kevin Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, C.W. Effects of macrophyte-specific olfactory cues on fish preference patterns. Aquat Ecol 51, 159–165 (2017). https://doi.org/10.1007/s10452-016-9606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-016-9606-z

Keywords

Navigation