Skip to main content

Advertisement

Log in

The effects of global warming on Daphnia spp. population dynamics: a review

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

Various species of Daphnia usually play a key role in the food web of temperate freshwater systems. There is much evidence to show that climate change may influence Daphnia population dynamics, consequently altering both predator–prey interactions and the efficiency of algal biomass control in these ecosystems. This review will analyse and discuss the current knowledge on Daphnia responses to climate warming based on an analysis of selected papers. The presented results indicate that warming may have important direct and indirect effects on Daphnia biology and ecology via its influence on their life-history processes (metabolism, growth, reproduction) and the properties of their habitats. The plasticity of daphnids in terms of adaptive responses is generally high and includes phenotypic adaptations and changes in genotypes, although it also depends upon the strength of selection and the available genetic variation. The seasonal timing and magnitude of temperature increases are important for seasonal biomass fluctuations of Daphnia and similarly influence the potential synchrony of daphnids and phytoplankton succession (the timing hypothesis). In light of the most recent studies on this topic, even a minor warming during short but critical seasonal periods can cause factors that disturb Daphnia population dynamics to coincide, which may destabilize lake food webs by decoupling trophic interactions. Both winter and spring are important critical periods for determining future seasonal fluxes of Daphnia spp. and, consequently, the time of the clear-water phase and the occurrence and duration of Daphnia midsummer decline. Winter conditions may also affect the impact of fish predation on daphnids during summer months. However, the effects of global warming on Daphnia population dynamics and on ecosystem functioning are often difficult to predict due to their complexity and the presence of both antagonistic and synergistic drivers. Thus, the diverse responses of daphnids to climate anomalies depend on both biotic (predator abundance and seasonal phytoplankton succession) and abiotic factors (e.g. hydrodynamics, intensity and duration of thermal stratification, trophic state or geomorphology) of lakes, which are directly influenced by weather changes. The analysis and quantification of such complex interactions require the involvement of different kinds of specialists and the development of accurate research approaches, such as molecular genetic methods or mathematical modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abgeti MD, Smol JP (1995) Water limnology: a comparison of physical, chemical and biological characteristics in two temperate lakes during ice cover. Hydrobiologia 304:221–234

    Article  Google Scholar 

  • Adrian R, Deneke R (1996) Possible impact of mild winters on zooplankton succession in eutrophic lakes of the Atlantic European area. Freshw Biol 36:757–770

    Article  Google Scholar 

  • Adrian R, Wilhelm S, Gerten D (2006) Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob Change Biol 12:652–661

    Article  Google Scholar 

  • Altermatt F, Pajunen VI, Ebert D (2008) Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob Change Biol 14:1209–1220

    Article  Google Scholar 

  • Altermatt F, Pajunen VI, Ebert D (2009) Desiccation of rock pool habitats and its influence on population persistence in a Daphnia metacommunity. PLoS One 4:e4703. doi:10.1371/journal.pone.0004703

    Article  PubMed  CAS  Google Scholar 

  • Amsinck S, Jeppesen E, Verschuren D (2007) Use of cladoceran resting eggs to trace climate-driven and anthropogenic changes in aquatic ecosystems. In: Alekseev VR, De Stasio B, Gilbert JJ (eds) Diapause in aquatic invertebrates, theory and human use. Monogr Biol 84(Part II):135–157

  • Balayla D, Lauridsen TL, Søndergaard M, Jeppesen E (2010) Larger zooplankton in Danish lakes after cold winters: are winter fish kills of importance? Hydrobiologia 646:159–172

    Article  CAS  Google Scholar 

  • Baranyi C, Hein T, Holarek C, Keckeis S, Schiemer F (2002) Zooplankton biomass and community structure in a Danube River floodplain system: effects of hydrology. Freshw Biol 47:473–482

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) climate change and water. Technical paper of the intergovernmental panel on climate change, IPCC Secretariat, Geneva, p 210

  • Battarbee RW, Thompson R, Catalan J, Grytnes J-A, Birks HJB (2002) Climate variability and ecosystem dynamics of remote alpine and arctic lakes: the MOLAR project. J Paleolimnol 28:1–6

    Article  Google Scholar 

  • Beisner BE, McCauley E, Wrona FJ (1996) Temperature-mediated dynamics of planktonic food chains: the effect of an invertebrate carnivore. Freshw Biol 35:219–232

    Article  Google Scholar 

  • Beisner BE, McCauley E, Wrona FJ (1997) The influence of temperature and food chain length on plankton predator-prey dynamics. Can J Fish Aquat Sci 54:586–595

    Google Scholar 

  • Benndorf J, Kranich J, Mehner T, Wagner A (2001) Temperature impact on the midsummer decline of Daphnia galeata: an analysis of long-term data from the biomanipulated Bautzen Reservoir (Germany). Freshw Biol 46:199–211

    Article  Google Scholar 

  • Berger SA, Diehl S, Stibor H, Trommer G, Ruhenstroth M, Wild A, Weigert A, Jäger CG, Striebel M (2007) Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150:643–654

    Article  PubMed  Google Scholar 

  • Bernot RJ, Dodds WK, Quist MC, Guy CS (2004a) Larval fish-induced phenotypic plasticity of coexisting Daphnia: an enclosure experiment. Freshw Biol 49:87–97

    Article  Google Scholar 

  • Bernot RJ, Dodds WK, Quist MC, Guy CS (2004b) Spatial and temporal variability of zooplankton in a great plains reservoir. Hydrobiologia 525:101–112

    Article  Google Scholar 

  • Bernot RJ, Dodds WK, Quist MC, Guy CS (2006) Temperature and kairomone induced life history plasticity in coexisting Daphnia. Aquat Ecol 40:361–372

    Article  Google Scholar 

  • Bjerring R, Becares E, Declerck S, Gross EM, Hansson L-A, Kairesalo T, Nykänen M, Halkiewicz A, Kornijów R, Conde-Porcuna JM, Seferlis M, Nõges T, Moss B, Amsinck SI, Vad Odgaard B, Jeppesen E (2009) Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshw Biol 54:2401–2417

    Article  CAS  Google Scholar 

  • Boersma M, van Tongeren OFR, Mooij WM (1996) Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can J Fish Aquat Sci 53:18–28

    Article  Google Scholar 

  • Bonnet MP, Paulin M (2002) Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa dominance. Ecol Model 156:93–112

    Article  Google Scholar 

  • Boucher P, Ditlecadet D, Dubé C, Dufresne F (2010) Unusual duplication of the insulin-like receptor in the crustacean Daphnia pulex. BMC Evol Biol 10:305

    Article  PubMed  CAS  Google Scholar 

  • Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84

    Article  Google Scholar 

  • Carvalho L, Kirika A (2003) Changes in shallow lake functioning: response to climate change and nutrient reduction. Hydrobiologia 506–509:789–796

    Article  Google Scholar 

  • Chen CY, Folt CL (1996) Consequences of fall warming for zooplankton overwintering success. Limnol Oceanogr 41:1077–1086

    Article  Google Scholar 

  • Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, Tokishita S et al (2011) The ecoresponsive genome of Daphnia pulex. Science 331:555–561

    Article  PubMed  CAS  Google Scholar 

  • Corbett LB, Munroe JS (2010) Investigating the influence of hydrogeomorphic setting on the response of lake sedimentation to climatic changes in the Uinta Mountains, Utah, USA. J Paleolimnol 44:311–325

    Article  Google Scholar 

  • Cushing DH (1974) The production cycle and numbers of marine fish. In: Jones FRH (ed) Sea fisheries research. Wiley, New York, pp 399–411

    Google Scholar 

  • Dawidowicz P, Gliwicz ZM, Gulati RD (1988) Can Daphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica (Berlin) 19:21–26

    Google Scholar 

  • Dejen E, Vijverberg J, Nagelkerke LAJ, Sibbing FA (2004) Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513:39–49

    Article  Google Scholar 

  • Deneke R, Nixdorf B (1999) On the occurrence of clear-water phases in relation to shallowness and trophic state: a comparative study. Hydrobiologia 408–409:251–262

    Article  Google Scholar 

  • Duigan CA, Birks HH (2000) The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Krakenes, western Norway, with a quantitative reconstruction of temperature changes. J Paleolimnol 23:67–76

    Article  Google Scholar 

  • Dumont HJ (1994) On the diversity of the Cladocera in the tropics. Hydrobiologia 272:27–38

    Article  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND, Wood RA, Erwin DE (2008) Compilation and network analyses of Cambrian food web. PLoS Biol 6:693–708

    Article  CAS  Google Scholar 

  • Dupuis AP, Hann BJ (2009) Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: potential implications for phytoplankton and zooplankton. J Plankton Res 31:489–502

    Article  CAS  Google Scholar 

  • Ebert D (2005) Ecology, epidemiology and evolution of parasitism in Daphnia [internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books

  • Gaedke U, Ollinger D, Bäuerle E, Straile D (1998) The impact of weather conditions on the seasonal plankton development. Arch Hydrobiol Spec Issues Adv Limnol 53:565–585

    Google Scholar 

  • Gelinas M, Pinell-Alloul B, Ślusarczyk M (2007) Alternative antipredator responses of two coexisting Daphnia species to negative size selection by YOY perch. J Plankton Res 29:775–789

    Google Scholar 

  • George DG, Hewitt DP (2006) The impact of year-to-year changes in the weather on the dynamics of Daphnia in a thermally stratified lake. Aquat Ecol 40:33–47

    Article  CAS  Google Scholar 

  • George DG, Talling JF, Rigg E (2000) Factors influencing the temporal coherence of five lakes in the English Lake District. Freshw Biol 43:449–461

    Article  Google Scholar 

  • Gerten D, Adrian R (2000) Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol Oceanogr 45:1058–1066

    Article  Google Scholar 

  • Gerten D, Adrian R (2001) Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnol Oceanogr 46:448–455

    Article  Google Scholar 

  • Giebelhausen B, Lampert W (2001) Temperature reaction norms of Daphnia magna: the effect of food concentration. Freshw Biol 46:281–289

    Article  Google Scholar 

  • Gliwicz ZM, Siedlar E (1980) Food size limitation and algae interfering with food collection in Daphnia. Arch Hydrobiol 88:155–177

    Google Scholar 

  • Grad G, Williamson CE, Karapelou DM (2001) Zooplankton survival and reproduction responses to damaging UV radiation: a test of reciprocity and photoenzymatic repair. Limnol Oceanogr 46:584–591

    Article  Google Scholar 

  • Guillard J, Perga ME, Colon M, Angeli N (2006) Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish Manag Ecol 13:319–327

    Article  Google Scholar 

  • Gyllström M, Hansson L-A, Jeppesen E, García-Criado F, Gross E, Irvine K, Kairesalo T, Kornijów R, Miracle MR, Nykänen M, Nõges T, Romo S, Stephen D, Van Donk E, Moss B (2005) The role of climate in shaping zooplankton communities of shallow lakes. Limnol Oceanogr 50:2008–2021

    Article  Google Scholar 

  • Hamrová E, Mergeay J, Petrusek A (2011) Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy. BMC Evol Biol 11:231. doi:10.1186/1471-2148-11-231

    Article  PubMed  Google Scholar 

  • Heisey D, Porter KG (1977) The filtering rate and respiration rates of Daphnia magna and Daphnia gendali. Limnol Oceanogr 22:839–845

    Article  Google Scholar 

  • Huber V, Adrian R, Gerten D (2008) Phytoplankton response to climate warming modified by trophic state. Limnol Oceanogr 53:1–13

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Fenger-Grøn M, Bramm ME, Sandby K, Møller PH, Rasmussen HU (2004) Impact of fish predation on cladoceran body weight distribution and zooplankton grazing in lakes during winter. Freshw Biol 49:432–447

    Article  Google Scholar 

  • Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL, Beklioglu M, Özen A, Olesen JE (2009) Climate change effects of runoff, catchement phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual 38:1030–1041

    Article  CAS  Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heat waves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512

    Article  Google Scholar 

  • Jørgensen SE (2009) The application of structurally dynamic models in ecology and ecotoxicology. In: Devillers J (ed) Ecotoxicology modelling, emerging topics in ecotoxicology: principles, approaches and perspectives, vol 2. Springer, Berlin, pp 377–393

  • Jørgensen SE (2011) Lake models. In: Jørgensen SE (ed) Handbook of ecological models used in ecosystem and environmental management. CRC Press, Taylor & Francis Group, Boca Raton, pp 15–62

    Chapter  Google Scholar 

  • Kamenik Ch, Szeroczyńska K, Schmidt R (2007) Relationships among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594:33–46

    Article  Google Scholar 

  • Kattel GR, Battarbee RW, Mackay AW, Birks HJB (2008) Recent ecological change in a remote Scottish mountain loch: an evaluation of a Cladocera-based temperature transfer-funktion. Palaeogeogr Palaeocol 259:51–76

    Article  Google Scholar 

  • Khan MAQ, Khan MA (2008) Effect of temperature on waterflea Daphnia magna (Crustacea: Cladocera). Nature proceedings. http://hdl.handle.net/10101/npre.2008.1909.1

  • Kinnison MT, Hairston NG Jr (2007) Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct Ecol 21:444–454

    Article  Google Scholar 

  • Lagerspetz KYH (2000) Thermal avoidance and preference in Daphnia magna. J Therm Biol 25:405–410

    Article  PubMed  Google Scholar 

  • Lampert W (2006) Daphnia: model herbivore, predator and prey. Pol J Ecol 54:607–620

    Google Scholar 

  • Lampert W, Fleckner H, Rai H, Taylor BE (1986) Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnol Oceanogr 31:478–490

    Article  Google Scholar 

  • Larsson P, Dodson SI (1993) Chemical communication in planktonic animals. Arch Hydrobiol 129:129–155

    CAS  Google Scholar 

  • Lass S, Spaak P (2003) Temperature effects on chemical signalling in a predator-prey system. Freshw Biol 48:669–677

    Article  CAS  Google Scholar 

  • Law T, Zhang W, Zhao J, Arhonditsis GB (2009) Structural changes in lake functioning induced from nutrient loading and climate variability. Ecol Model 220:979–997

    Article  CAS  Google Scholar 

  • Lennon JT, Smith VH, Williams K (2001) Influence of temperature on exotic Daphnia lumholtzi and implications for invasion success. J Plankton Res 23:425–434

    Article  Google Scholar 

  • MacFayden EJ, Williamson CE, Grad G, Lowery M, Jeffrey WH, Mitchell DL (2004) Molecular response to climate change: effect of temperature dependence of UVR-induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Glob Change Biol 10:408–416

    Article  Google Scholar 

  • MacIsaac HJ, Hebert PDN, Schwartz SS (1985) Inter- and intraspecific variation in acute thermal tolerance of Daphnia. Physiol Zool 58:350–355

    Google Scholar 

  • Manca M, de Bernardi R (1987) Feeding and energy budget estimations in Daphnia obtusa. Hydrobiologia 145:269–274

    Article  Google Scholar 

  • McCauley E, Murdoch WW, Nisbet RM, Gurney WSC (1990) The physiological ecology of Daphnia: development of a model of growth and reproduction. Ecology 71:703–715

    Article  Google Scholar 

  • Meeting Briefs: Water flea boasts whopper gene count. News of the week: The biology of genomes, 5–9 May 2009, Cold Spring Harbor, New York. Science 324:1252. doi:10.1126/science.324_1252a

  • Mehner T (2000) Influence of spring warming on the predation rate of underyearling fish on Daphnia—a deterministic simulation approach. Freshw Biol 45:253–263

    Article  Google Scholar 

  • Mehner T, Thiel R (1999) A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environ Biol Fish 56:169–181

    Article  Google Scholar 

  • Mehner T, Schultz H, Bauer D, Herbst R, Voigt H, Benndorf J (1996) Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): interactions with zooplankton succession, prey fish availability and temperature. Ann Zool Fenn 33:353–361

    Google Scholar 

  • Milecka K, Szeroczyńska K (2005) Changes in macrophytic flora and planktonic organisms in Lake Ostrowite, Poland, as a response to climatic and trophic fluctuations. Holocene 15:74–84

    Article  Google Scholar 

  • Mooij WM, Hülsmann S, De Senerpont Domis LN, Nolet BA, Bodelier PLE, Boers PCM, Dionisio Pires LM, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens EHR (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400

    Article  CAS  Google Scholar 

  • Mooij WM, Janse JH, De Senerpont Domis LN, Hülsmann S, Ibelings BW (2007) Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia 584:443–454

    Article  CAS  Google Scholar 

  • Mooij WM, De Senerpont Domis LN, Hülsmann S (2008) The impact of climate warming on water temperature, timing of hatching and young-of-the-year growth of fish in shallow lakes in the Netherlands. J Sea Res 60:32–43

    Article  Google Scholar 

  • Mooij WM, De Senerpont Domis LN, Janse JH (2009) Linking species- and ecosystem-level impacts of climate change in lakes with a complex and a minimal model. Ecol Model 220:3011–3020

    Article  Google Scholar 

  • Moore MV, Folt CL, Stemberger RS (1996) Consequences of elevated temperatures for zooplankton assemblages in temperate lakes. Arch Hydrobiol 135:289–319

    Google Scholar 

  • Mourelatos S, LaCroix G (1990) In situ filtering rates of Cladocera: effect of body length, temperature, and food concentration. Limnol Oceanogr 35:1101–1111

    Article  Google Scholar 

  • Nicolle A, Hansson L-A, Brodersen J, Nilsson PA, Brönmark C (2011) Interactions between predation and resources shape zooplankton population dynamics. PLoS One 6:e16534. doi:10.1371/journal.pone.0016534

    Article  PubMed  CAS  Google Scholar 

  • Norberg J, DeAngelis D (1997) Temperature effects on stocks and stability of a phytoplankton-zooplankton model and the dependence on light and nutrients. Ecol Model 95:75–86

    Article  Google Scholar 

  • O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, Weiss JM (2007) Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc Natl Acad Sci USA 104:1266–1271

    Article  PubMed  CAS  Google Scholar 

  • Orcutt DJ, Porter KG (1983) Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol Oceanogr 28:720–730

    Article  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  PubMed  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Paul RJ, Lamkemeyer T, Maurer J, Pinkhaus O, Pirow R, Seidl M, Zeis B (2004) Thermal acclimation in the microcrustacean Daphnia: a survey of behavioural, physiological and biochemical mechanisms. J Therm Biol 29:655–662

    Article  CAS  Google Scholar 

  • Peeters F, Livingstone DM, Goudsmit GH, Kipfer R, Forster R (2002) Modelling 50 years of historical temperature profiles in a large central European lake. Limnol Oceanogr 47:186–197

    Article  Google Scholar 

  • Persson J, Brett MT, Verde T, Ravet JL (2007) Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116:1152–1168

    Article  Google Scholar 

  • Pettersson K, Grust K, Weyhenmeyer G, Blenckner T (2003) Seasonality of chlorophyll and nutrients in Lake Erken—effects of weather conditions. Hydrobiologia 506–509:75–81

    Article  Google Scholar 

  • Pijanowska J, Stolpe G (1996) Summer diapause in Daphnia as a reaction to the presence of fish. J Plankton Res 18:1407–1412

    Article  Google Scholar 

  • Preston ND, Rusak JA (2010) Homage to Hutchinson: does inter-annual climate variability affect zooplankton density and diversity. Hydrobiologia 653:165–177

    Article  CAS  Google Scholar 

  • Rellstab C, Spaak P (2009) Lake origin determines Daphnia population growth under winter conditions. J Plankton Res 31:261–271

    Article  CAS  Google Scholar 

  • Rennella AM, Quiros R (2006) The effects of hydrology on plankton biomass in shallow lakes of the Pampa Plain. Hydrobiologia 556:181–191

    Article  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/Luhe

    Google Scholar 

  • Rinke K, Petzoldt T (2003) Modelling the effects of temperature and food on individual growth and reproduction of Daphnia and their consequences on the population level. Limnologica 33:293–304

    Article  Google Scholar 

  • Rinke K, Vijverberg J (2005) A model approach to evaluate the effect of temperature and food concentration on individual life-history and population dynamics of Daphnia. Ecol Model 186:326–344

    Article  Google Scholar 

  • Schalau K, Rinke K, Straile D, Peeters F (2008) Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study. Oecologia 157:531–543

    Article  PubMed  Google Scholar 

  • Scheffer M, Straile D, van Nes EH, Hosper H (2001) Climatic warming cause regime shifts in lake food webs. Limnol Oceanogr 46:1780–1783

    Article  Google Scholar 

  • Smol JP (2005) Tracking long-term environmental changes in arctic lakes and ponds: a paleolimnological perspective. Arctic 58:227–229

    Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch Hydrobiol 106:433–471

    Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506:135–145

    Article  Google Scholar 

  • Spaak P, Vanoverbeke J, Boersma M (2000) Predator induced life-history changes and the coexistence of five taxa in a Daphnia species complex. Oikos 89:164–174

    Article  Google Scholar 

  • Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan K-S, Lima M (2002) Ecological effects of climate fluctuations. Science 297:1292–1296

    Article  PubMed  CAS  Google Scholar 

  • Stillman JH, Colbourne JK, Lee CE, Patel NH, Phillips MR, Towle DW, Henry RP, Johnson EA, Pfrender ME, Terwilliger NB (2008) Recent advances in crustacean genomics. Integr Comp Biol 48:852–868

    Article  PubMed  Google Scholar 

  • Straile D (2000) Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122:44–50

    Article  Google Scholar 

  • Straile D, Adrian R (2000) The North Atlantic Oscillation and plankton dynamics in two European lakes—two variations on a general theme. Glob Change Biol 6:663–670

    Article  Google Scholar 

  • Sweetman JN, LaFace E, Rühland KM, Smol JP (2008) Evaluating the response of Cladocera to recent environmental changes in lakes from the central Canadian Arctic treeline region. Arct Antarct Alp Res 40:584–591

    Article  Google Scholar 

  • Sweetman JN, LaFace E, Rühland KM, Smol JP (2010) Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region. J Limnol 69:76–87

    Article  Google Scholar 

  • Szeroczyńska K, Zawisza E (2005) Daphnia remains from the sediment of Lake Somaslampi (NW Finnish Lapland) and Lake Wigry (NE Poland). Stud Quat 22:55–57

    Google Scholar 

  • Tadonléké RD (2010) Evidence of warming effects on phytoplankton productivity rates and their dependence on eutrophication status. Limnol Oceanogr 55:973–982

    Article  CAS  Google Scholar 

  • Talling JF (2003) Phytoplankton-zooplankton seasonal timing and the “clear-water phase” in some English lakes. Freshw Biol 48:39–52

    Article  CAS  Google Scholar 

  • Tomec M, Ternjej I, Kerovec M, Teskeredžić E, Meštrov M (2002) Plankton in the oligotrophic lake Vrana (Croatia). Biologia 57:579–588

    Google Scholar 

  • Tsugeki NK, Ishida S, Urabe J (2009) Sedimentary records of reduction in resting egg production of Daphnia galeata in Lake Biwa during the 20th century: a possible effect of winter warming. J Paleolimnol 42:155–165

    Article  Google Scholar 

  • Van Doorslaer W, Stoks R, Duvivier C, Bednarska A, De Meester L (2009a) Population dynamics determine genetic adaptation to temperature in Daphnia. Evolution 63:1867–1878

    Article  PubMed  Google Scholar 

  • Van Doorslaer W, Vanoverbeke J, Duvivier C, Rousseaux S, Jansen M, Jansen B, Feuchtmayr H, Atkinson D, Moss B, Stoks R, De Meester L (2009b) Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob Change Biol 15:3046–3055

    Article  Google Scholar 

  • Visconti A, Manca M, de Bernardi R (2008) Eutrophication-like response to climate warming: an analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. J Limnol 67:87–92

    Article  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc B 275:649–659

    Article  PubMed  Google Scholar 

  • Wagner A, Benndorf J (2007) Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia 151:351–364

    Article  PubMed  Google Scholar 

  • Wagner A, Hülsmann S, Dörner H, Janssen M, Kahl U, Mehner T, Benndorf J (2004) Initiation of the midsummer decline of Daphnia as related to predation non-consumptive mortality and recruitment: a balance. Arch Hydrobiol 160:1–23

    Article  Google Scholar 

  • Walls M, Ventelä AM (1998) Life history variability in response to temperature and Chaoborus exposure in three Daphnia pulex clones. Can J Fish Aquat Sci 55:1961–1970

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater algae of North America: ecology and classification. Academic Press, USA, p 918

    Google Scholar 

  • Wiggins PR, Frappell PB (2002) Behavioural thermoregulation in Daphnia carinata from different depths of a natural water body: influence of environmental oxygen levels and temperature. Comp Biochem Physiol A 133:771–780

    Article  CAS  Google Scholar 

  • Williamson CE, Stemberger RS, Morris DP, Frost TM, Paulsen SG (1996) Ultraviolet radiation in North American lakes: attenuation estimates from DOC measurements and implications for plankton communities. Limnol Oceanogr 41:1024–1034

    Article  CAS  Google Scholar 

  • Williamson CE, Grad G, De Lange HJ, Gilroy S (2002) Temperature-dependent ultraviolet responses in zooplankton: implications of climate change. Limnol Oceanogr 47:1844–1848

    Article  Google Scholar 

  • Winder M, Schindler DE (2004) Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85:2100–2106

    Article  Google Scholar 

  • Wojtal A, Frankiewicz P, Wagner-Łotkowska I, Zalewski M (2004) The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera. Hydrobiologia 515:123–135

    Article  Google Scholar 

  • Wojtal A, Bogusz D, Menshutkin V, Izydorczyk K, Frankiewicz P, Wagner-Łotkowska I, Zalewski M (2008) A study of Daphnia-Leptodora-juvenile Percids interactions using a mathematical model in the biomanipulated Sulejow Reservoir. Ann Limnol Int J Lim 44:69–86

    Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil Trans R Soc B 365:2093–2106

    Article  PubMed  Google Scholar 

  • Wu L, Culver DA (1994) Daphnia population dynamics in western Lake Erie: regulation by food limitation and yellow perch predation. J Great Lakes Res 20:537–545

    Article  Google Scholar 

  • Zalewski M (2000) Ecohydrology the scientific background to use ecosystem properties as management tool toward sustainability of freshwater resources. Ecol Eng 16:1–8

    Article  Google Scholar 

  • Zalewski M, Brewińska-Zaraś B, Frankiewicz P, Kalinowski S (1990) The potential for biomanipulation usig fry communities in a lowland reservoir: concordance between water quality and optimal recruitment. Hydrobiologia 200(201):549–556

    Article  Google Scholar 

  • Zawisza E, Szeroczyńska K (2007) The development history of Wigry Lake as shown by subfossil Cladocera. Geochronometria 27:67–74

    Article  Google Scholar 

  • Zeis B, Horn W, Gigengack U, Koch M, Paul RJ (2010) A major shift in Daphnia genetic structure after the first ice-free winter in a German reservoir. Freshw Biol 55:2296–2304

    Google Scholar 

Download references

Acknowledgments

The author would like to thank three anonymous reviewers for their valuable comments improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrianna Wojtal-Frankiewicz.

Additional information

Handling Editor: Piet Spaak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojtal-Frankiewicz, A. The effects of global warming on Daphnia spp. population dynamics: a review. Aquat Ecol 46, 37–53 (2012). https://doi.org/10.1007/s10452-011-9380-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-011-9380-x

Keywords

Navigation