Skip to main content

Advertisement

Log in

Quantitative responses of lake phytoplankton to eutrophication in Northern Europe

Aquatic Ecology Aims and scope Submit manuscript

Abstract

Based on the currently largest available dataset of phytoplankton in lakes in northern Europe, we quantified the responses of three major phytoplankton classes to eutrophication. Responses were quantified by modelling the proportional biovolumes of a given group along the eutrophication gradient, using generalized additive models. Chlorophyll-a (Chl-a) was chosen as a proxy for eutrophication because all classes showed more consistent responses to Chl-a than to total phosphorus. Chrysophytes often dominate in (ultra-) oligotrophic lakes, and showed a clear decrease along the eutrophication gradient. Pennate diatoms were found to be most abundant at moderate eutrophication level (spring-samples). Cyanobacteria often dominate under eutrophic conditions, especially in clearwater lakes at Chl-a levels >10 μg l−1 (late summer samples). We compare the relationships among types of lakes, based on the lake typology of the northern geographic intercalibration group, and among countries sharing common lake types. Significant differences were found especially between humic and clearwater lakes, and between low- and moderately alkaline lakes, but we could not identify significant differences between shallow and deep lakes. Country-specific differences in response curves were especially pronounced between lakes in Norway and Finland, while Swedish lakes showed an intermediate pattern, indicating that country-specific differences reflect large-scale geographic and climatic differences in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Chlorophyll-a:

Chl-a

References

  • Andersen T (1997) Pelagic nutrient cycles: herbivores as sources and sinks. Ecological Studies, vol 129. Springer, Berlin

    Google Scholar 

  • Britton G (1983) The biochemistry of natural pigments. Cambridge University Press

  • Brettum P (1989) Alger som indikator på vannkvalitet i norske innsjøer. Planteplankton. Niva-Rapport 0-86116:1–111 (in Norwegian)

    Google Scholar 

  • Downing JA, Watson SB, McCauley E (2001) Predicting Cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58:1905–1908

    Article  Google Scholar 

  • European Commission (2000) Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for Community action in the field of water policy. Official Journal 2000 L 327/1, European Commission, Brussels

  • EU Intercalibration report: Lakes 2007. http://circa.europa.eu/Public/irc/jrc/jrc_eewai/library?l=/intercalibration_2/technical_report_2007/lakes&vm=detailed&sb=Title

  • Hörnström E (1981) Trophic characterization of lakes by means of qualitative phytoplankton analysis. Limnologica 13:246–261

    Google Scholar 

  • Intercalibration Guidance (2005) Common implementation strategy for the water framework directive (2000/60/EC). Guidance on the intercalibration process 2004–2006. Guidance document no.14. European Communities 2005. ISBN 92-894-9471-9

  • Kohl JG, Nicklisch A (1988) Ökophysiologie der Algen. Akademischer Verlag, Berlin (in German)

    Google Scholar 

  • Komárek J, Anagnostidis K (1999) Cyanoprocaryota 1. Teil: Chroococcales. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Lepistö L, Räike A, Pietiläinen O-P (1999) Long-term changes of phytoplankton in a eutrophicated boreal lake during the past one hundred years (1893–1998). Algol Stud 94:223–244

    Google Scholar 

  • Lyche A. (1990) Cluster analysis of plankton community structure in 21 lakes along a gradient of trophy. Verh Int Verein Limnol 24:586–591

    Google Scholar 

  • Moe J, Dudley B, Ptacnik R (2008) REBECCA databases: experiences from compilation and analyses of monitoring data from 5000 lakes in 20 European countries. Aquatic Ecol. doi:10.1007/s10452-008-9190-y

  • Naumann E (1919) Några synpunkter angående limnoplanktons ökologi, med särskild hänsyn till fytoplankton. Svensk Botanisk Tidskrift 13:51–58 (in Swedish)

    Google Scholar 

  • Nygaard G (1949) Hydrobiological studies on some Danish ponds and lakes. II: the quotient hypothesis and some little known or new phytoplankton organisms. Kunglige Danske Vidensk Selskab 7:1–242

    Google Scholar 

  • Olrik K, Blomqvist P, Brettum P et al (1998) Methods for quantitative assessment of phytoplankton in freshwaters, part I. Naturvårdsverket, Stockholm, 86 pp

  • Phillips G, Pietiläinen OP, Carvalho L, Solimini A, Lyche Solheim A, Cardoso AC (2008) Chlorophyll—nutrient relationships of different lake types using a large European dataset. Aquatic Ecol. doi:10.1007/s10452-008-9180-0

  • Ptacnik R, Diehl S, Berger S (2003) Performance of sinking and non-sinking phytoplankton taxa in a gradient of mixing depths. Limnol Oceanogr 48:1903–1912

    Google Scholar 

  • Ptacnik R, Solimini AG, Andersen A, Tamminen T, Brettum P, Lepistö L, Willén E, Rekolainen S (2008) Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc Natl Acad Sci USA 105:5134–5138

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1995) Comparative aspects of chrysophyte nutrition with emphasis on carbon, phosphorus and nitrogen. In: Sandgren CD et al (eds) Chrysophyte algae: ecology, phylogeny and development. Cambride University Press, New York

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reynolds CS (1980) Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecol 3:141–159

    Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater phytoplankton. Cambridge University Press, New York

    Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D. Reidel Publishing Company, Dordrecht, The Netherlands

    Google Scholar 

  • Sandgren C. D. (1988) The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge, pp 9–104

    Google Scholar 

  • Skjelkvåle BL, Henriksen A, Jónsson GS, Mannio J, Wilander A, Jensen JP, Fjeld E, Lien L (2001) Chemistry of lakes in the Nordic region—Denmark, Finland with Åland, Iceland, Norway with Svalbard and Bear Island, and Sweden. SNO 4391-2001. NIVA, Oslo, 39 pp

  • Sommer U (1991) Phytoplankton: directional succession and forced cycles. In: Remmert H (ed) The mosaic-cycle concept of ecosystems, ecological studies 85. Springer, Heidelberg, Germany

    Google Scholar 

  • Teiling E (1955) Some mesotrophic phytoplankton indicators. Int Assoc Theor Appl Limn XII:212–215

    Google Scholar 

  • Teubner K, Tolotti M, Greisberger S et al (2003) Steady state phytoplankton in a deep pre-alpine lake: species and pigments of epilimnetic versus metalimetic assemblages. Hydrobiologia 502:49–64

    Article  Google Scholar 

  • Vollenweider RA (1989) Eutrophication. In: Meybeck M, ChapmanD, Helmer R (eds) Global freshwater quality—a first assessment. World Health Organization and the United Nations Environmental Programme

  • Vuorio K, Lepistö L, Holopainen AL (2007) Intercalibrations of freshwater phytoplankton analysis. Boreal Environ Res 12:561–569

    Google Scholar 

  • Watson SB, McCauley E, Downing J (1997) Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:486–495

    Article  Google Scholar 

  • Willén E (2000) Phytoplankton in water quality assessment—an indicator concept. In: Heinonen P, Ziglio G, Van Der Beken A (eds) Hydrological and limonological aspects of lake monitoring. Wiley, New York

    Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman & Hall/CRC, Boca Raton, Florida

Download references

Acknowledgements

We thank Jannicke Moe and Gunner Severinsen for help with the REBECCA database, and the three reviewers for their constructive comments to earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ptacnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ptacnik, R., Lepistö, L., Willén, E. et al. Quantitative responses of lake phytoplankton to eutrophication in Northern Europe. Aquat Ecol 42, 227–236 (2008). https://doi.org/10.1007/s10452-008-9181-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-008-9181-z

Keywords

Navigation