Skip to main content
Log in

Systematic study of the excess and the absolute adsorption of N2/H2 and CO2/H2 mixtures on Cu-BTC

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this work, we report thermodynamically consistent adsorption data of H2/N2 and H2/CO2 mixtures on Cu-BTC at 297 K and pressures up to 1000 kPa. The measurements were performed on a recirculation volumetric set-up. The experimental (excess) data was converted into absolute adsorption by using the pore volume of the material, measured by Nitrogen at 77 K. From these data, the absolute and the excess surface phase properties (uptake, selectivity, surface potential) were compared. The results show that the absolute selectivity is lower than the excess selectivity in the two mixtures. Furthermore, an analysis of models’ performances in the two mixtures adsorption shows that the extended Langmuir and Toth models predict fairly the excess selectivity whereas IAST is suitable to describe the absolute selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Brandani, S., Mangano, E., Sarkisov, L.: Net, excess and absolute adsorption and adsorption of helium. Adsorption 22(2), 261–276 (2016)

    Article  CAS  Google Scholar 

  • Brandani, S., Mangano, E., Luberti, M.: Net, excess and absolute adsorption in mixed gas adsorption. Adsorption 23(4), 569–576 (2017)

    Article  CAS  Google Scholar 

  • Gumma, S., Talu, O.: Gibbs dividing surface and helium adsorption. Adsorption 9, 17–28 (2003)

    Article  CAS  Google Scholar 

  • Hughes, I.G., Hase, T.P.A.: Measurements and their Uncertainties: a practical guide to modern error analysis. Oxford University Press Inc., New York (2010)

    Google Scholar 

  • Jaroniec, M., Töth, J.: Adsorption of gas mixtures on heterogeneous solid surfaces: I. Extension of Tóth isotherm on adsorption from gas mixtures. Colloid Polym. Sci. 254(7), 643–649 (1976)

    Article  CAS  Google Scholar 

  • Keller, J.U., Göbel, M.U.: Oscillometric—volumetric measurements of pure gas adsorption equilibria devoid of the non-adsorption of helium hypothesis. Adsorpt. Sci. Technol. 33(9), 793–818 (2015)

    Article  CAS  Google Scholar 

  • Keller, J.U., Goebel, M.U., Seeger, T.: Oscillometric–gravimetric measurements of pure gas adsorption equilibria without the non-adsorption of helium hypothesis. Adsorption 23(6), 753–766 (2017)

    Article  CAS  Google Scholar 

  • Keskin, S.: Molecular simulations for adsorption-based CO2 separation using metal organic frameworks. In: Zafar, F., Sharmin, E. (eds.) Metal-Organic Frameworks. InTech, Rijeka (2016)

    Google Scholar 

  • Kloutse, F.A., Hourri, A., Natarajan, S., Benard, P., Chahine, R.: Experimental benchmark data of CH4, CO2 and N2 binary and ternary mixtures adsorption on MOF-5. Sep. Purif. Technol. 197, 228–236 (2018a)

    Article  CAS  Google Scholar 

  • Kloutse, F.A., Hourri, A., Natarajan, S., Benard, P., Chahine, R.: Hydrogen separation by adsorption: experiments and modelling of H2-N2-CO2 and H2-CH4-CO2 mixtures adsorption on CuBTC and MOF-5. Microporous Mesoporous Mater. 271, 175–185 (2018b)

    Article  CAS  Google Scholar 

  • Li, J.-R., Kuppler, R.J., Zhou, H.-C.: Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38(5), 1477–1504 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Li, B., Wang, H., Chen, B.: Microporous metal–organic frameworks for gas separation. Chemistry 9(6), 1474–1498 (2014)

    CAS  Google Scholar 

  • Liang, Z., Marshall, M., Chaffee, A.L.: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23(5), 2785–2789 (2009)

    Article  CAS  Google Scholar 

  • Liu, D., Zhong, C.: Understanding gas separation in metal-organic frameworks using computer modeling. J. Mater. Chem. 20(46), 10308–10318 (2010)

    Article  CAS  Google Scholar 

  • Myers, A.L.: Thermodynamics of adsorption in porous materials. AIChE J. 48(1), 145–160 (2002)

    Article  CAS  Google Scholar 

  • Myers, A.L., Monson, P.A.: Physical adsorption of gases: the case for absolute adsorption as the basis for thermodynamic analysis. Adsorption 20(4), 591–622 (2014)

    Article  CAS  Google Scholar 

  • Myers, A., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  CAS  Google Scholar 

  • Panella, B., Hirscher, M., Putter, H., Muller, U.: Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv Funct Mater 16(4), 520–524 (2006)

    Article  CAS  Google Scholar 

  • Rao, M.B., Sircar, S.: Thermodynamic consistency for binary gas adsorption equilibria. Langmuir 15(21), 7258–7267 (1999)

    Article  CAS  Google Scholar 

  • Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption, vol. 480. VCH Publishers, New York (1994)

    Google Scholar 

  • Silva, B., Solomon, I., Ribeiro, A.M., Lee, U.H., Hwang, Y.K., Chang, J.-S., Loureiro, J.M., Rodrigues, A.E.: H2 purification by pressure swing adsorption using CuBTC. Sep Purif Technol 118(Supplement C), 744–756 (2013)

    Article  CAS  Google Scholar 

  • Siperstein, F.R., Myers, A.L.: Mixed-gas adsorption. AIChE J. 47(5), 1141–1159 (2001)

    Article  CAS  Google Scholar 

  • Sircar, S.: Excess properties and thermodynamics of multicomponent gas adsorption. J Chem Soc Faraday Trans 81(7), 1527–1540 (1985)

    Article  CAS  Google Scholar 

  • Sircar, S.: Gibbsian surface excess for gas adsorptionrevisited. Ind. Eng. Chem. Res. 38(10), 3670–3682 (1999)

    Article  CAS  Google Scholar 

  • Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45(16), 5435–5448 (2006)

    Article  CAS  Google Scholar 

  • Sircar, S.: Comments on the artificiality of actual amount adsorbed. Ind. Eng. Chem. Res. 57(19), 6766–6773 (2018)

    Article  CAS  Google Scholar 

  • Talbot, J.: Analysis of adsorption selectivity in a one-dimensional model system. AIChE J. 43(10), 2471–2478 (1997)

    Article  CAS  Google Scholar 

  • Talu, O.: Needs, status, techniques and problems with binary gas adsorption experiments. Adv. Colloid Interface Sci. 76–77, 227–269 (1998)

    Article  Google Scholar 

  • Talu, O.: Net adsorption of gas/vapor mixtures in microporous solids. J. Phys. Chem. C 117(25), 13059–13071 (2013)

    Article  CAS  Google Scholar 

  • Thomas, W.J., Crittenden, B.: 2—adsorbents. In: Adsorption Technology & Design, pp 8–30. Butterworth-Heinemann, Oxford (1998)

  • Yang, R.T.: Chapter 3—equilibrium adsorption of gas mixtures. In: Gas Separation by Adsorption Processes, pp. 49–100. Butterworth-Heinemann (1987c)

  • Yang, R.T.: Chapter 2—adsorbents and adsorption isotherms. In: Gas Separation by Adsorption Processes, pp. 9–48. Butterworth-Heinemann (1987b)

  • Yang, R.T.: Chapter 1—introductory remarks. In: Gas Separation by Adsorption Processes, pp. 1–8. Butterworth-Heinemann (1987a)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Kloutse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kloutse, F.A., Hourri, A., Natarajan, S. et al. Systematic study of the excess and the absolute adsorption of N2/H2 and CO2/H2 mixtures on Cu-BTC. Adsorption 25, 941–950 (2019). https://doi.org/10.1007/s10450-019-00124-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-019-00124-3

Keywords

Navigation