Skip to main content
Log in

The differential Gibbs free energy of sorption of an ionizable organic compound: eliminating the contribution of solute–bulk solvent interactions

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Sorption of ionizable organic compounds (IOCs) from solutions is of great significance in multiple processes but its understanding is complicated by IOC speciation. Experimental separation of contributions of differently ionized species to the overall IOC sorption is not always feasible, due to the possibility of sorbent changes/decomposition upon varying pH. Even when such a separation is successful, accounting of ionized solute–bulk solvent interactions is not obvious. Therefore, actual interactions in a sorbed phase are “masked” by solute–bulk solvent interactions, thus complicating relating IOC sorption interactions to a compound structure. A new thermodynamic concept is proposed which reformulates the differential Gibbs free energy of IOC sorption in such a way that the initial thermodynamic state of the sorption process is the solution reference state associated with a non-ionized form of IOC. Hence, IOC ion–bulk solvent interactions are excluded from consideration. These redefined differential Gibbs free energies of sorption do not require separating the whole IOC sorption into the contributions of different species; however, if such a separation is possible, it converts the overall sorption process into the two quantified steps: (1) neutral IOC sorption and (2) turning on the sorbed IOC ion–sorbent interactions. The suggested definition of the sorption process makes also possible the further elimination (or minimizing) of IOC–bulk solvent interactions, by converting the molecular IOC solution reference state to another molecular reference state in an inert medium (i.e., the gas phase or inert solvents). Finally, the differential Gibbs free energies of sorption “cleaned” of IOC–bulk solvent interactions can be examined in terms of organic sorbate structure effects, with the focus on the interactions in a sorbed state. The concept is illustrated by the experimental data on soil sorption of IOCs from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balk, F., Ford, R.A.: Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU: I. Fate and exposure assessment. Environ. Toxicol. Lett. 111, 57–79 (1999)

    Article  CAS  Google Scholar 

  • Borisover, M.D., Graber, E.R.: Specific interactions of nonionic organic compounds with soil organic carbon. Chemosphere 34, 1761–1776 (1997)

    Article  CAS  Google Scholar 

  • Borisover, M., Graber, E.R.: Thermodynamics of organic compound transfer from the gas phase to environmentally important sorbents. Isr. J. Chem. 42, 77–87 (2002)

    Article  CAS  Google Scholar 

  • Borisover, M., Graber, E.R.: Classifying NOM-organic sorbate interactions using compound transfer from an inert solvent to the hydrated sorbent. Environ. Sci. Technol. 37, 5657–5664 (2003)

    Article  CAS  Google Scholar 

  • Bowden, D.J., Clegg, S.L., Brimblecombe, P.: The Henry’s law constant of trifluoroacetic acid and its partitioning into liquid water in the atmosphere. Chemosphere 32, 405–420 (1996)

    Article  CAS  Google Scholar 

  • Bronner, G., Goss, K.-U.: Sorption of organic chemicals to soil organic matter: influence of soil variability and pH dependence. Environ. Sci. Technol. 45, 1307–1312 (2011)

    Article  CAS  Google Scholar 

  • ChemSpider: www.chemspider.com. Accessed at 5 Oct 2015

  • Dabrowski, A., Podkościelny, P., Hubicki, Z., Barczak, M.: Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58, 1049–1070 (2005)

    Article  CAS  Google Scholar 

  • Endo, S., Grathwohl, P., Haderlein, S.B., Schmidt, T.C.: Characterization of sorbent properties of soil organic matter and carbonaceous geosorbents using n-alkanes and cycloalkanes as molecular probes. Environ. Sci. Technol. 43, 393–400 (2009)

    Article  CAS  Google Scholar 

  • Figueroa, R., Leonard, A., Mackay, A.: Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol. 38, 476–483 (2004)

    Article  CAS  Google Scholar 

  • Franco, A., Ferranti, A., Davidsen, C., Trapp, S.: An unexpected challenge: ionizable compounds in the REACH chemical space. Int. J. Life Cycle Assess. 15, 321–325 (2010)

    Article  CAS  Google Scholar 

  • Graber, E.R., Borisover, M.D.: Competitive sorption of organic contaminants in chalk. J. Contam. Hydrol. 1939, 1–17 (2003)

    Google Scholar 

  • Haynes, W.M.: CRC Handbook of Chemistry and Physics, 94th edn. CRC Press, Boca Raton (2013)

    Google Scholar 

  • Hazardous Substances Databank (HSDB Toxnet Database): U.S. National Library of Medicine. http://toxnet.nlm.nih.gov (2015)

  • Hüffer, T., Endo, S., Metzelder, F., Schroth, S., Schmidt, T.C.: Prediction of sorption of aromatic and aliphatic organic compounds by carbon nanotubes using poly-parameter linear free-energy relationships. Water Res. 59, 295–303 (2014)

    Article  Google Scholar 

  • Lagaly, G., Dekany, I.: Colloid clay science, chapter 8. In: Bergaya, F., Lagaly, G. (eds.) Developments in Clay Science—Volume 5A, Handbook of Clay Science, Fundamentals, 2nd edn, pp. 243–345. Elsevier, Amsterdam (2013)

    Google Scholar 

  • Pan, B., Lin, D., Mashayekhi, H., Xing, B.: Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environ. Sci. Technol. 42, 5480–5485 (2008)

    Article  CAS  Google Scholar 

  • Pan, B., Zhang, H.: Interaction mechanisms and predictive model for the sorption of aromatic compounds onto nonionic resins. J. Phys. Chem. C 117, 17707–17715 (2013)

    Article  CAS  Google Scholar 

  • Poole, S.K., Poole, C.F.: Chromatographic models for the sorption of neutral organic compounds by soil from water and air. J. Chromatogr. A 845, 381–400 (1999)

    Article  CAS  Google Scholar 

  • Prigogine, I., Defay, R.: Chemical Thermodynamics, chapter 26. Translated by Everett, D. H., Longmans, Green and Company, Inc., London, (1954)

  • Pyrzynska, K., Stafiej, A., Biesaga, M.: Sorption behavior of acidic herbicides on carbon nanotubes. Microchim. Acta 159, 293–298 (2007)

    Article  CAS  Google Scholar 

  • Qu, X., Liu, P., Zhu, D.: Enhanced sorption of polycyclic aromatic hydrocarbons to tetra-alkyl ammonium modified smectites via cation–π interactions. Environ. Sci. Technol. 42, 1109–1116  (2008)

    Article  CAS  Google Scholar 

  • Schaffer, M., Licha, T.: A guideline for the identification of environmentally relevant, ionizable organic molecule species. Chemosphere 103, 12–25 (2014)

    Article  CAS  Google Scholar 

  • Schoonheydt, R.A., Johnston, C.T.: Surface and interface chemistry of clay minerals, chapter 5. In: Bergaya, F., Lagaly, G. (eds.) Developments in Clay Science—Volume 5A, Handbook of Clay Science, Fundamentals, 2nd edn, pp. 139–172. Elsevier, Amsterdam (2013)

    Google Scholar 

  • Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M.: Environmental Organic Chemistry. Wiley, Hoboken (2003)

    Google Scholar 

  • Tarchitzky, J., Chen, Y., Banin, A.: Humic substances and pH effects on sodium- and calcium-montmorillonite flocculation and dispersion. Soil Sci. Soc. Am. J. 57, 367–372 (1993)

    Article  CAS  Google Scholar 

  • Ter Laak, T.L., Gebbink, W.A., Tolls, J.: The effect of pH and ionic strength on the sorption of sulfachloropyridazine, tylosin, and oxytetracycline to soil. Environ. Toxicol. Chem. 25, 904–911 (2006)

    Article  Google Scholar 

  • Tombacz, E., Libor, Z., Illes, E., Majzik, A., Klumpp, E.: The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org. Geochem. 35, 257–267 (2004)

    Article  CAS  Google Scholar 

  • Usyskin, A., Bukhanovsky, N., Borisover, M.: Interactions of triclosan, gemfibrozil and galaxolide with biosolid-amended soils: effects of the level and nature of soil organic matter. Chemosphere 138, 272–280 (2015)

    Article  CAS  Google Scholar 

  • Wang, Z., Sjirlej, M.D., Meikle, S.T., Whitby, R.D., Mikhalovsky, S.V.: The surface acidity of acid oxidised multi-walled carbon nanotubes and the influence of in situ generated fulvic acids on their stability in aqueous dispersions. Carbon 47, 73–79 (2009)

    Article  CAS  Google Scholar 

  • Wu, C.X., Spongberg, A.L., Witter, J.D.: Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. J. Agric. Food Chem. 57, 4900–4905 (2009)

    Article  CAS  Google Scholar 

  • Xiao, F., Pignatello, J.J.: Effect of adsorption nonlinearity on the pH-adsorption profile of ionizable organic compounds. Langmuir 30, 1994–2001 (2014)

    Article  CAS  Google Scholar 

  • Zhu, D., Pignatello, J.J.: Characterization of aromatic compound sorptive interactions with black carbon (charcoal) assisted by graphite as a model. Environ. Sci. Technol. 39, 2033–2041 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Comments of two anonymous reviewers are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Borisover.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisover, M. The differential Gibbs free energy of sorption of an ionizable organic compound: eliminating the contribution of solute–bulk solvent interactions. Adsorption 22, 735–743 (2016). https://doi.org/10.1007/s10450-016-9769-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9769-x

Keywords

Navigation