Skip to main content
Log in

Quiescent hydrothermal synthesis of reduced graphene oxide–periodic mesoporous silica sandwich nanocomposites with perpendicular mesochannel alignments

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Quiescent hydrothermal conditions were applied to synthesis of the sandwich nanocomposites of reduced graphite oxide (rGO) and periodic mesoporous silica (PMS) with vertically aligned mesochannels. It was found that the formation of the PMS–rGO–PMS sandwich structure is very sensitive to the surface and synthesis conditions. Although a higher temperature hydrothermal condition promotes reduction of GO and formation of bulky mesoporous nanoparticles, quiescent hydrothermal condition can serve as an alternative approach to obtain the unusual nanocomposites and slightly promote the structural stability of PMS on the surface of rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksay, I.A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P.M., Gruner, S.M.: Biomimetic pathways for assembling inorganic thin films. Science 273, 892–898 (1996)

    Article  CAS  Google Scholar 

  • Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    Article  CAS  Google Scholar 

  • Ang, P.K., Wang, S., Bao, Q., Thong, J.T.L., Loh, K.P.: High-throughput synthesis of graphene by intercalation–exfoliation of graphite oxide and study of ionic screening in graphene transistor. ACS Nano 3, 3587–3594 (2009)

    Article  CAS  Google Scholar 

  • Beck, J.S., Vartuli, J.C., Roth, W.J., Leonowicz, M.E., Kresge, C.T., Schmitt, K.D., Chu, C.T.-W., Olson, D.H., Sheppard, E.W., McCullen, S.B., Higgins, J.B., Schlenker, J.L.: A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  CAS  Google Scholar 

  • Chu, Y.-H., Wang, Z.-M., Yamagishi, M., Kanoh, H., Hirotsu, T., Zhang, Y.-X.: Synthesis of nanoporous graphite-derived carbon–silica composites by a mechanochemical intercalation approach. Langmuir 21, 2545–2551 (2005)

    Article  CAS  Google Scholar 

  • Compton, O.C., Nguyen, S.T.: Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010)

    Article  CAS  Google Scholar 

  • Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007)

    Article  CAS  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area, and Porosity. Academic Press, New York (1982)

    Google Scholar 

  • Hoffmann, F., Cornelius, M., Morell, J., Fröba, M.: Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 45, 3216–3251 (2006)

    Article  CAS  Google Scholar 

  • Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  CAS  Google Scholar 

  • Hummers, W.S., Offeman, R.E.: Preparation of graphite oxides. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  CAS  Google Scholar 

  • Koganti, V.R., Dunphy, D., Gowrishankar, V., McGehee, M.D., Li, X., Wang, J., Rankin, S.E.: Generalized coating route to silica and titania films with orthogonally titled cylindrical nanopore arrays. Nano Lett. 6, 2567–2570 (2006)

    Article  CAS  Google Scholar 

  • Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  • Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  CAS  Google Scholar 

  • Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  • Richman, E.K., Brezesinski, T., Tolbert, S.H.: Vertically oriented hexagonal mesoporous films formed through nanometer scale epitaxy. Nat. Mater. 7, 712–717 (2008)

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.S.W.: Adsorption by Powders & Porous Solids. Academic Press, San Diego (1999)

    Google Scholar 

  • Sharma, R., Baik, J.H., Perera, C.J., Strano, M.S.: Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 10, 398–405 (2010)

    Article  CAS  Google Scholar 

  • Stankovich, S., Dikin, D.A., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  CAS  Google Scholar 

  • Szabó, T., Berkesi, O., Forgo, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I.: Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006)

    Article  Google Scholar 

  • Thommes, M.: Physical adsorption characterization of ordered and amorphous mesoporous materials. In: Lu, G.Q., Zhao, X.S. (eds.) Nanoporous Materials, Science & Engineering, Chap. 11, pp. 318–364. Imperial College Press, London (2004)

    Google Scholar 

  • Walcarius, A., Sibottier, E., Etienne, M., Ghanbaja, J.: Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 6, 602–608 (2007)

    Article  CAS  Google Scholar 

  • Wang, Z.-M., Hoshinoo, K., Shishibori, K., Kanoh, H., Ooi, K.: Surfactant-mediated synthesis of a novel nanoporous carbon–silica composites. Chem. Mater. 15, 2926–2935 (2003)

    Article  CAS  Google Scholar 

  • Wang, Z.-M., Wang, W., Coombs, N., Soheilnia, N., Ozin, G.A.: Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano 4, 7437–7450 (2010)

    Article  CAS  Google Scholar 

  • Yang, H., Coombs, N., Sokolov, I., Ozin, G.A.: Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature 381, 589–592 (1996a)

    Article  CAS  Google Scholar 

  • Yang, H., Coombs, N., Sokolov, I., Ozin, G.A.: Registered growth of mesoporous silica films on graphite. J. Mater. Chem. 7, 1285–1290 (1997)

    Article  CAS  Google Scholar 

  • Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S., Ozin, G.A.: Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703–705 (1996b)

    Article  CAS  Google Scholar 

  • Zhao, D., Yang, P., Melosh, N., Feng, J., Chmelka, B.F., Stucky, G.D.: Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Grants-in-Aid for Scientific Research (KAKENHI) Grant Number 24550170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZM., Yoshizawa, N., Kosuge, K. et al. Quiescent hydrothermal synthesis of reduced graphene oxide–periodic mesoporous silica sandwich nanocomposites with perpendicular mesochannel alignments. Adsorption 20, 267–274 (2014). https://doi.org/10.1007/s10450-013-9584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9584-6

Keywords

Navigation