Skip to main content
Log in

Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The objective of this manuscript was to elucidate the main mechanism of mass transport involved in intraparticle diffusion during the adsorption of phenol, methylene blue (MB), and methyl blue (MTB) on granular activated carbon (AC F400) by using three diffusional models: (i) pore volume diffusion model (PVDM), (ii) pore volume and surface diffusion model (PVSDM), and (iii) surface diffusion model (SDM). Results revealed that the molecular size of the organic compounds as well as its adsorption capacity considerably affect their overall adsorption rate as well as controlling the mass transfer mechanism. The PVSDM model, which assumes that pore volume and surface diffusion are both important in intraparticle diffusion, satisfactorily fitted the experimental data. The percentage contribution of surface diffusion to overall intraparticle diffusion was >82 % for phenol, 19 % for MTB and 5–95 % for MB. These results confirmed that the controlling mechanism of the overall adsorption rate on AC F400 is surface diffusion for phenol and pore volume diffusion for MTB, while both diffusion mechanisms are important in the adsorption of MB. The SDM modeled reasonably well the concentration decay data for phenol adsorption under different experimental conditions. Furthermore, it was found that surface diffusion coefficient values augmented as the amount of phenol adsorbed at equilibrium increased. The PVDM model fitted the experimental MTB decay data reasonably well, showing that the tortuosity factor of AC F400 ranged from 3 to 5. The external mass transport did not affect the overall rate of phenol, MB and MTB adsorption on AC F400.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

a:

Prausnitz–Radke isotherm constant (L/g)

b:

Prausnitz–Radke isotherm constant (mmol−βLβ)

CA :

Concentration of adsorbate in aqueous solution (mmol/L)

CA0 :

Initial concentration of adsorbate in aqueous solution (mmol/L)

CAr :

Concentration of adsorbate within the particle at distance r (mmol/L)

CAr∣r=Rp :

Concentration of adsorbate at the external surface of the particle at r = Rp (mmol/L)

dp :

Average pore diameter (nm)

DAB :

Molecular diffusion coefficient at infinite dilution (cm2/s)

Dep :

Effective pore volume diffusion coefficient (cm2/s)

Ds :

Surface diffusion coefficient (cm2/s)

kL :

External mass transfer coefficient in liquid phase (cm/s)

m:

Mass of adsorbent (g)

qe :

Amount of adsorbate adsorbed at equilibrium (mmol/g)

qexp :

Experimental amount of solute adsorbed (mmol/g)

qpred :

Amount of solute adsorbed predicted with the isotherm model (mmol/g)

r:

Radial distance (cm)

Rp :

Radius of the particle (cm)

S:

External surface area per mass of adsorbent (cm2/g)

V:

Volume of the solution (mL)

β:

Prausnitz–Radke isotherm constant

εp :

Void fraction of AC F400 particles

ρp :

Density of adsorbent particles (g/mL)

τ:

Tortuosity factor

ϕA :

Dimensionless concentration of adsorbate in the solution

ϕexp :

Experimental dimensionless concentration of adsorbate in the solution

ϕpred :

Dimensionless concentration of adsorbate in the solution predicted with the diffusional models

References

  • Al Duri, B., Mckay, G.: Basic dye adsorption on carbon using a solid-phase diffusion model. Chem. Eng. J. 38, 23–31 (1988)

    Article  CAS  Google Scholar 

  • Cañizares, P., Carmona, M., Baraza, O., Delgado, A., Rodrigo, M.A.: Adsorption equilibrium of phenol onto chemically modified activated carbon F400. J. Hazard. Mater. 131, 243–248 (2006)

    Article  Google Scholar 

  • Chiang, Y., Chiang, P., Huang, C.: Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39, 523–534 (2001)

    Article  CAS  Google Scholar 

  • Choong, T.S.Y., Wong, T.N., Chuah, T.G., Idris, A.: Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. J. Colloid Interface Sci. 301, 436–440 (2006)

    Article  CAS  Google Scholar 

  • Choy, K.K.H., Porter, J.F., McKay, G.: Film-surface diffusion during the adsorption of acid dyes onto activated carbon. J. Chem. Technol. Biotechnol. 79, 1181–1188 (2004)

    Article  CAS  Google Scholar 

  • Diaz-Flores, P.E., Leyva-Ramos, R., Guerrero-Coronado, R.M., Mendoza-Barron, J.: Adsorption of pentachlorophenol from aqueous solution onto activated carbon fiber. Ind. Eng. Chem. Res. 45, 330–336 (2006)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Book  Google Scholar 

  • El Qada, E.N., Allen, S.J., Walker, G.M.: Adsorption of basic dyes from aqueous solution onto activated carbons. Chem. Eng. J. 135, 174–184 (2008)

    Article  Google Scholar 

  • Fulazzaky, M.A.: Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column. Chem. Eng. J. 166, 832–840 (2011)

    Article  CAS  Google Scholar 

  • Furusawa, T., Smith, J.M.: Fluid-particle and intraparticle mass transport rates in slurries. Ind. Eng. Chem. Fundam. 12, 197–203 (1973)

    Article  CAS  Google Scholar 

  • Gil, A., Grange, P.: Application of the Dubinin–Radushkevich and Dubinin–Astakhov equations in the characterization of microporous solids. Colloids Surf. Physicochem. Eng. Asp. 113, 39–50 (1996)

    Article  CAS  Google Scholar 

  • Karimi-Jashni, A., Narbaitz, R.M.: Impact of pH on the adsorption and desorption kinetics of 2-nitrophenol on activated carbons. Water Res. 31, 3039–3044 (1997)

    Article  CAS  Google Scholar 

  • Kim, S.J., Kim, S.J., Kim, T.Y., Cho, S.Y.: A study of adsorption behavior of 2,4-Dichlorophenoxyacetic acid onto various GACs. Korean J. Chem. Eng. 19, 1050–1058 (2002)

    Article  CAS  Google Scholar 

  • Leyva-Ramos, R., Geankoplis, C.J.: Diffusion in liquid-filled pores of activated carbon. I. Pore volume diffusion. Can. J. Chem. Eng. 72, 262–271 (1994)

    Article  CAS  Google Scholar 

  • Leyva-Ramos, R., Bernal-Jacome, L.A., Mendoza-Barron, J., Hernandez-Orta, M.M.G.: Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon. J. Taiwan Inst. Chem. Eng. 40, 622–629 (2009)

    Article  CAS  Google Scholar 

  • Mahmudov, R., Huang, C.P.: Selective adsorption of oxyanions on activated carbon exemplified by Filtrasorb 400 (F400). Sep. Purif. Technol. 77, 294–300 (2011)

    Article  CAS  Google Scholar 

  • Mohan, D., Pittman Jr, C.U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P.H., Alexandre-Franco, M.F., Gómez-Serrano, V., Gong, H.: Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J. Colloid Interface Sci. 310, 57–73 (2007)

    Article  CAS  Google Scholar 

  • Ocampo-Perez, R., Leyva-Ramos, R., Alonso-Davila, P., Rivera-Utrilla, J., Sanchez-Polo, M.: Modeling adsorption rate of pyridine onto granular activated carbon. Chem. Eng. J. 165, 133–141 (2010)

    Article  CAS  Google Scholar 

  • Poling, B.E., Prausnitz, M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill, USA (2006)

    Google Scholar 

  • Rivera-Utrilla, J., Sánchez-Polo, M., Gómez-Serrano, V., Álvarez, P.M., Alvim-Ferraz, M.C.M., Dias, J.M.: Activated carbon modifications to enhance its water treatment applications. An overview. J. Hazard. Mater. 187, 1–23 (2011)

    Article  CAS  Google Scholar 

  • Sotelo, J.L., Ovejero, G., Delgado, J.A., Martínez, I.: Adsorption of lindane from water onto GAC: Effect of carbon loading on kinetic behavior. Chem. Eng. J. 87, 111–120 (2002)

    Article  CAS  Google Scholar 

  • Suzuki, M.: Adsorption Engineering. Elsevier, Japan (1990)

    Google Scholar 

  • Sze, M.F.F., McKay, G.: Enhanced mitigation of para-chlorophenol using stratified activated carbon adsorption columns. Water Res. 46, 700–710 (2012)

    Article  CAS  Google Scholar 

  • Traegner, U.K., Suidan, M.T.: Parameter evaluation for carbon adsorption. J. Environ. Eng. 115, 109–128 (1989)

    Article  CAS  Google Scholar 

  • Verma, Y.: Toxicity assessment of dye containing industrial effluents by acute toxicity test using Daphnia magna. Toxicol. Ind. Health 27, 41–49 (2011)

    Article  CAS  Google Scholar 

  • Wibowo, N., Setyadhi, L., Wibowo, D., Setiawan, J., Ismadji, S.: Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: Influence of surface chemistry on adsorption. J. Hazard. Mater. 146, 237–242 (2007)

    Article  CAS  Google Scholar 

  • Yang, X., Al-Duri, B.: Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J. Colloid Interface Sci. 287, 25–34 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ocampo-Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocampo-Pérez, R., Leyva-Ramos, R., Sanchez-Polo, M. et al. Role of pore volume and surface diffusion in the adsorption of aromatic compounds on activated carbon. Adsorption 19, 945–957 (2013). https://doi.org/10.1007/s10450-013-9502-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9502-y

Keywords