Skip to main content
Log in

Effect of the synthesis temperature of sodium nonatitanate on batch kinetics of strontium-ion adsorption from aqueous solution

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Sodium titanate materials are promising inorganic ion exchangers for the adsorption of strontium from aqueous solutions. Sodium nonatitanate exhibits a layered structure consisting of titanate layers and exchangeable sodium ions between the layers. The materials used in this study include samples synthesized by a hydrothermal method at temperatures between 60 °C and 200 °C. Their structure, composition, and morphology were investigated with X-Ray diffraction measurements; thermogravimetric, compositional and surface area analyses, and scanning electron microscopy. The structure, composition, and morphology depended on the synthesis temperature. Batch kinetics experiments for the removal of strontium from aqueous solutions were performed, and the data were fitted by a pseudo-second-order reaction model and a diffusive model. The strontium extraction capacity also depended on the synthesis temperature and exhibited a maximum for samples synthesized at 100 °C. The sorption process occurs in one or two diffusion-controlled steps that also depend on the synthesis temperature. These diffusion-limited steps are the boundary-layer diffusion and intra-particle diffusion in the case of pure nonatitanate synthesized at temperatures lower than 170 °C, and only intra-particle diffusion in the case of nonatitanate synthesized at 200 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akieh, M.N., Lahtinen, M., Vaisanen, A., Sillanpaa, M.: Preparation and characterization of sodium iron titanate ion exchanger and its application in heavy metal removal from waste waters. J. Hazard. Mater. 152(2), 640–647 (2008). doi:10.1016/j.jhazmat.2007.07.049

    Article  CAS  Google Scholar 

  • Barre, Y.: Unpublished work. Office Report (2010)

  • Bascetin, E., Atun, G.: Adsorptive removal of strontium by binary mineral mixtures of montmorillonite and zeolite. J. Chem. Eng. Data 55(2), 783–788 (2010). doi:10.1021/je9004678

    Article  CAS  Google Scholar 

  • Behrens, E.A., Sylvester, P., Clearfield, A.: Assessment of a sodium nonatitanate and pharmacosiderite-type ion exchangers for strontium and cesium removal from DOE waste simulants. Environ. Sci. Technol. 32(1), 101–107 (1998)

    Article  CAS  Google Scholar 

  • Bochkarev, G.R., Pushkareva, G.I.: Strontium removal from aqueous media by natural and modified sorbents. J. Min. Sci. 45(3), 290–294 (2009). doi:10.1007/s10913-009-0036-3

    Article  Google Scholar 

  • Boyd, G.E., Adamson, A.W., Myers, L.S.: The exchange adsorption of ions from aqueous solutions by organic zeolites. J. Am. Chem. Soc. 69(11), 2836–2848 (1947)

    Article  CAS  Google Scholar 

  • Clearfield, A., Lehto, J.: Preparation, structure, and ion-exchange properties of Na4Ti9O20, xH2O. J. Solid State Chem. 73(1), 98–106 (1988)

    Article  CAS  Google Scholar 

  • Crini, G., Badot, P.M.: Traitement et épuration des eaux industrielles polluées : procédés membranaires, bioadsorption et oxydation chimique. Presses Universitaires de Franche Comté (2009)

  • Crini, G., Peindy, H.N., Gimbert, F., Robert, C.: Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep. Purif. Technol. 53(1), 97–110 (2007). doi:10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  • DeFilippi, I., Yates, S., Sedath, R., Straszewski, M., Andren, M., Gaita, R.: Scale-up and testing of a novel ion exchanger for strontium. Sep. Sci. Technol. 32(1–4), 93–113 (1997)

    Article  CAS  Google Scholar 

  • Duff, M.C., Hunter, D.B., Hobbs, D.T., Fink, S.D., Dai, Z., Bradley, J.P.: Mechanisms of strontium and uranium removal from high-level radioactive waste simulant solutions by the sorbent monosodium titanate. Environ. Sci. Technol. 38(19), 5201–5207 (2004). doi:10.1021/es035415+

    Article  CAS  Google Scholar 

  • Graziano, G.M.: Synthesis, Characterization and Ion Exchange Properties of a Sodium Nonatitanate. A&M University (1998)

  • Hagg, M.B.: Membranes in chemical processing—a review of applications and novel developments. Sep. Purif. Methods 27(1), 51–168 (1998)

    Article  CAS  Google Scholar 

  • Hamblin, C., Ensor, B.: Decommissioning of a liquid effluent treatment R&D facility. Proc. Inst. Mech. Eng., E J. Process Mech. Eng. 218(E3), 169–174 (2004)

    Article  Google Scholar 

  • Ho, Y.S.: Review of second-order models for adsorption systems. J. Hazard. Mater. 136(3), 681–689 (2006). doi:10.1016/j.jhazmat.2005.12.043

    Article  CAS  Google Scholar 

  • Hristovski, K., Westerhoff, P., Crittenden, J.: An approach for evaluating nanomaterials for use as packed bed adsorber media: a case study of arsenate removal by titanate nanofibers. J. Hazard. Mater. 156(1–3), 604–611 (2008). doi:10.1016/j.jhazmat.2007.12.073

    Article  CAS  Google Scholar 

  • Kirillov, S.A., Lisnycha, T.V., Pendelyuk, O.I.: Appraisal of mixed amorphous manganese oxide/titanium oxide sorbents for the removal of strontium-90 from solutions, with special reference to Savannah river site and Chernobyl radioactive waste simulants. Adsorp. Sci. Technol. 24(10), 895–906 (2006)

    Article  CAS  Google Scholar 

  • Kurniawan, T.A., Chan, G.Y.S., Lo, W.H., Babel, S.: Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118(1–2), 83–98 (2006). doi:10.1016/j.cej.2006.01.015

    Article  CAS  Google Scholar 

  • Lee, C.K., Lin, K.S., Wu, C.F., Lyu, M.D., Lo, C.C.: Effects of synthesis temperature on the microstructures and basic dyes adsorption of titanate nanotubes. J. Hazard. Mater. 150(3), 494–503 (2008). doi:10.1016/j.jhazmat.2007.04.129

    Article  CAS  Google Scholar 

  • Lehto, J., Clearfield, A.: The ion exchange of strontium on sodium titanate Na4Ti9O20, xH2O. J. Radioanal. Nucl. Chem. Lett. 118(1), 1–13 (1987)

    Article  CAS  Google Scholar 

  • Leinonen, H., Lehto, J.: Sodium-hydrogen ion exchange in sodium titanate Na4Ti9O20xH(2)O. Radiochemistry 40(6), 503–506 (1998)

    CAS  Google Scholar 

  • Li, Q., Liu, H.N., Liu, T.Y., Guo, M., Qing, B.J., Ye, X.S., Wu, Z.J.: Strontium and calcium ion adsorption by molecularly imprinted hybrid gel. Chem. Eng. J. 157(2–3), 401–407 (2010). doi:10.1016/j.cej.2009.11.029

    Article  CAS  Google Scholar 

  • Masaki, N., Uchida, S., Yamane, H., Sato, T.: Characterization of a new potassium titanate, KTiO2(OH) synthesized via hydrothermal method. Chem. Mater. 14(1), 419–424 (2002). doi:10.1021/cm0107427

    Article  CAS  Google Scholar 

  • Metwally, E., Rahman, R.O.A., Ayoub, R.R.: Modeling batch kinetics of cesium, cobalt and strontium ions adsorption from aqueous solutions using hydrous titanium oxide. Radiochim. Acta 95(7), 409–416 (2007). doi:10.1524/ract.2007.95.7.409

    Article  CAS  Google Scholar 

  • Pacary, V., Barre, Y., Plasari, E.: Modeling and comparison of continuous and semi-continuous processes for simulating decontamination of liquid nuclear wastes by the coprecipitation of strontium ions with barium sulphate. Int. J. Chem. React. Eng. 6, A32 (2008)

    Google Scholar 

  • Rahman, R.O.A., Ibrahim, H.A., Hanafy, M., Monem, N.M.A.: Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility. Chem. Eng. J. 157(1), 100–112 (2010). doi:10.1016/j.cej.2009.10.057

    Article  Google Scholar 

  • Sonar, N.L., Mishra, P.K., Kore, S.G., Sonavane, M.S., Kulkarni, Y., Raj, K., Manchanda, V.K.: Treatment of 106Ru present in intermediate level radioactive liquid waste with nickel sulphide. Sep. Sci. Technol. 44(2), 506–515 (2009). doi:10.1080/01496390802286546

    Article  CAS  Google Scholar 

  • Sylvester, P., Moller, T., Adams, T.W., Cisar, A.: New ion exchange materials for use in a Sr-82/Rb-82 generator. Appl. Radiat. Isot. 61(6), 1139–1145 (2004). doi:10.1016/j.apradiso.2004.02.029

    Article  CAS  Google Scholar 

  • Sylvester, P., Moller, T., Adams, T.W.: Improved separation methods for the recovery of Sr-82 from irradiated targets. Appl. Radiat. Isot. 64(4), 422–430 (2006). doi:10.1016/j.apradiso.2005.08.014

    Article  CAS  Google Scholar 

  • Vadivelan, V., Kumar, K.V.: Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 286(1), 90–100 (2005). doi:10.1016/j.jcis.2005.01.007

    Article  CAS  Google Scholar 

  • Worle, M., Lorenzen, V., Nesper, R.: Na6[Ti5O12(OH)2]: a new titanate containing (1)(infinity)[Ti5O12(OH)2]6 ribbons. Helv. Chim. Acta 92(11), 2474–2479 (2009)

    Article  Google Scholar 

  • Yates, S.F., Sylvester, P.: Sodium nonatitanate: a highly selective inorganic ion exchanger for strontium. Sep. Sci. Technol. 36(5–6), 867–883 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Grandjean.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merceille, A., Weinzaepfel, E., Barré, Y. et al. Effect of the synthesis temperature of sodium nonatitanate on batch kinetics of strontium-ion adsorption from aqueous solution. Adsorption 17, 967–975 (2011). https://doi.org/10.1007/s10450-011-9376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-011-9376-9

Keywords

Navigation